
  

  

Abstract— The base density of the support vector for 

machine learning (BDSVM) is important to establish the 

basic data for neural network learning. This paper 

presents a method to find the most important data and 

establish the objective function (FO) for the vector 

support machine learning (SVM). SVM is the most 

successful algorithm for classification problems. SVM 

establishes the decision limit between two classes of 

collected data (in the binary classification variant), this 

constituting the training points for the neural network. 

However, sometimes there are some less significant data 

among the training points, which are far from the training 

limit, being considered noise or data misplaced in 

Cartesian space from this training limit, called outliers. 

These outliers affect the performance of the learning stage 

of the neural network, and the proposed BDSVM 

algorithm eliminates them. Many research results prove 

this sensitivity of SVM to outliers, which is a weak point 

for SVM. Various researchers have proposed different 

methods approaches to reduce the effect of outliers, but 

no one method is suitable for all types of data sets. In this 

paper, the new method of collected data base density for 

support vector machine (BDSVM) is introduced. 

Index Terms—Assisted research, Base density, Classification, 

LabView software, Machine learning, Optimization stock, 

Support vector machine.  

I. INTRODUCTION 

Support Vector Machine (SVM) is a supervised classification 

method derived from statistical learning theory that often 

provides good classification results from complex data that 

includes both correct data and noise or outliers. SVM 

separates the collected data into classes through a decision 

limit, which maximizes the margin of obtaining correct data 

between the classes addressed. The surface is called the 

optimal hyperplane [1]-[3], and the data points closest to the 

hyperplane are called support vectors. The support vectors are 

the critical elements of the training set. You can adapt SVM 

to become a non-linear classifier by using non-linear kernels. 

While SVM is a binary classifier in its simplest form, it can 

work as a multiclass classifier by combining multiple binary 

SVM classifiers (creating a binary classifier for each possible 

pair of classes). SVM includes a penalty parameter that 

allows for some degree of misclassification, which is 

particularly important for non-separable training sets. The 
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penalty parameter controls the optimal trade-off between the 

data producing training errors and the correct data in the 

vicinity of the separation zone (minimum distances of the 

points from the points on the separation curve). Classification 

is a type of statistical problem, where we want to predict with 

accuracy, a membership in a predefined class, based on the 

characteristics of that class. In general, the main purpose of 

classification is to learn the discrimination rule to achieve the 

minimum error rate. In the statistical literature, linear 

discriminant analysis (LDA) Fisher's and quadratic 

discriminant analysis (QDA) are classic examples of a 

discriminant rule, and modern statistical tools include 

classification trees, logistic regression, neural networks, and 

methods based on support vector density, see [4]-[6]. Support 

Vector Machines is an important example of computational 

methods, one of the key areas in machine learning. It 

originates in the theoretical foundations of Statistical 

Learning Theory and Structural Risk Minimization (SRM) 

[7]-[8]. SVM was introduced by Vapnik and colleagues in the 

1970s, but its major developments were formulated in the 

1990s. The main idea behind SVM is to find an optimal 

separating hyperplane with a maximized optimization 

margin. The maximum margin reduces the empirical risks 

(training errors) and leads to a very good generalization 

performance. SVM has become very famous due to its high 

generalization ability and good performance in pattern 

recognition (digit recognition, computer vision, and text and 

speech categorization, etc.) and has found applications in a 

wide variety of fields [8]. The main objectives of the base 

density of SVM are: reducing the effects of outliers, 

maximizing the decision to obtain the optimal boundary 

between data sets, ensuring better generalization and 

adjusting the decision boundary according to the density of 

the data sets. Meanwhile, base density SVM reduces the 

number of support vectors, which decreases the 

computational complexity. It is worth noting that in the base 

density SVM, the input vectors are those that are in the 

highest confidence region of the dataset than other input 

vectors. Base density SVM can detect outliers or data points 

that are outside the densely populated area, singular or 

erroneous points. To detect these outliers, the densely 

populated area of a data set must first be determined. Data 

points that are located in the densely populated area will be 

considered important (meaningful) points and others as less 

important (meaningless), which may be misclassified or 

ignored. Although the concept of population density is used 

to develop density-based SVM, the formula is different. In 
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this method, the distance (Euclidean and Mahalanobis) 

between the data points of a data set, plays a major role in 

determining the area of high population density. 

II. ALGORITHM OF BDSVM 

The distance between two points calculated in Euclidean 

space is presented in (6) [9]-[11]. Suppose a two-dimensional 

data set is given by{(x1,y1),(x2,y2),  …(xn,yn)}. First, the 

Euclidean distance between all data points of a class is 

calculated. For example, the Euclidean distance between 

point 1 and 2, 3, ... , n and the Euclidean distance between 

point 2 at 1, 3, ..., n and so on. 

 

𝑑12 = √(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 

 

𝑑13 = √(𝑥1 − 𝑥3)2 + (𝑦1 − 𝑦3)2 

… 

                  𝑑1𝑛 = √(𝑥1 − 𝑥𝑛)2 + (𝑦1 − 𝑦𝑛 )2                  (6)  

 

The distance average of d1 is: 

          

                                   𝑑1 =
𝑑12+𝑑13+⋯+𝑑1𝑛

𝑛−1
                           (7)  

 

The total distance average of the group is:  

 

                              𝑑 =
𝑑1+𝑑2+⋯+𝑑𝑛

𝑛
                     (8) 

 

If  di >d,  

the point i is in outlier group; 

Else  

the point i will be considered important (meaningful) 

points in BDSVM; 

    End. 
 

From these meaningful points will be construct the 

optimization function (FO) that will be used in the training 

neural network to obtain the optimal stock. 
 

The distance between the points representing the input data 

calculated by the Mahalanobis method [9] instead of the 

Euclidean distance is calculated with (9). The Mahalanobis 

distance is calculated from the quantity μ which represents 

the average of the points' distances, to each point. The cov-1 

represents the inverse covariance matrix. This distance is 

based on the correlation between the variables or the 

variance-covariance matrix [11]-[12]. The Mahalanobis 

distance is the smaller unit and takes into account the 

correlation of the data set and does not depend on the 

measurement scale [9]-[10]. The Mahalanobis distance from 

the point to the mean of the distribution μ can be calculated 

by (9), and the Mahalanobis distance from one point to 

another can be calculated by (10): 
 

           𝑑 = √(𝑥 − 𝜇)𝑇𝑐𝑜𝑣−1(𝑥 − 𝜇)                           (9) 

 

            𝑑 = √(𝑥 − 𝑦)𝑇𝑐𝑜𝑣−1(𝑥 − 𝑦)                          (10) 
 

Where the population variance is calculated with [12]: 
 

                         𝑣𝑎𝑟(𝑥𝑛) =
∑ (𝑥−𝜇)2𝑛

1

𝑛
                     (11) 

 

and population covariance with: 

                    𝑐𝑜𝑣(𝑥𝑛, 𝑦𝑛) =
∑ (𝑥𝑖−𝜇𝑥)(𝑦𝑖−𝜇𝑦)𝑛

1

𝑛
                     (12) 

 

If cov(xi) & cov(yi)>0 

 both of them increase or decrease; 

If cov(xi) & cov(yi)<0 

 when xi increase yi decrease or vice-versa; 

If cov(xi) & cov(yi)=0 

 not exist any relation between xi & yi; 

If var(xi)> var(yi) 

 xi increase or decrease faster than yi; 

End. 
 

Average of d is: 

                   𝑎𝑣𝑒𝑟𝑎𝑔𝑒_𝑑 =
∑ √(𝑥𝑖−𝜇)𝑇𝑐𝑜𝑣−1(𝑥𝑖−𝜇)𝑛

1

𝑛
               (13) 

 

If  di >d,  

the point i is in outlier group; 

Else  

the point i will be considered important (meaningful) 

points in BDSVM; 

    End. 
 

The outlier points x3 will be removed from the weight matrix 

of the neural network, also the row and column that contents 

the outlier point x3 will be removed from the matrix, because 

it is necessary that the kernel matrix must be quadratic (14):  

 

       

 

 

         

(14) 

 

 

 
 

The block schema to define the base density support vector 

machine learning BDSVM are shown in fig.1 [11]. 
 

 
Fig.1. Block schema to define the BDSVM, by courtesy of authors of 

paper [11]. 



  

The optimization function (FO) was proposed one thread 

polynomial functions with real coefficients: 
 

               𝐹𝑂 = 𝑎1 ∗ 𝑥3 + 𝑎2 ∗ 𝑥2 + 𝑎3 ∗ 𝑥 + 𝑎4       (12) 
 

where the real coefficients ai were determined by using the 

matrix form of equation: 
 

                      (

𝑎1

𝑎2…
𝑎4

) = [
𝑥1

3 ⋯ 𝑥1 1
⋮ ⋱ ⋮

𝑥4
3 ⋯ 𝑥4 1

]

−1

. (
𝐹𝑂1

…
𝐹𝑂4

)                 (13) 

 

with the following constraints: 

- xi > 0; 
- xi must to be meaningful points, xi ∈ group 1; 

- xi ∈ BDSVM; 

- xi ∈ group A, B, C. 
 

To establish the optimal number of the stock products was 

used the A,B,C theory that impose the following data [13]: 

A- contents the products with 20% from the total 

number of the products and 80% of total value of 

products; 

B- contents the products with 30% from the total 

number of the products and 15% of total value of 

products; 

C- contents the products with 50% from the total 

number of the products and 5% of total value of 

products; 

III. LABVIEW INSTRUMENTATION 

 
Fig.2. Part of the block schema of the LabView virtual instrument to 

find the optimal function’s real coefficients. 

 
Fig.3. Part of block schema of the LabView virtual instrument to design 

the characteristic of the FO. 

 
Fig.4. Block schema of the virtual LabView instrument to compare the 

stock values from diverse A,B,C categories.  

 
Fig.5. Block schema of the virtual LabView instrument to determine the 

optimal stock by using the BDSVM. 

 

Virtual instruments Vi with LabView soft cover the 

assisted research to find the polynomial optimizing function 

(FO) after core and noise elimination. We proposed to 

develop one polynomial function with three order with 

constant coefficients, FO. In the figs.2-3 are shown the 

coefficients results values and the characteristic of the FO. 

After the first step of the block schema solved to define 

BDSVM, fig.1, and used the mathematical proposed model 

(1)- (13) were find four points from the border that we used 

to find the real coefficients ai of the FO. By using the FO and 

the ABC theory were construct the Vi-s for the calculus of the 

optimized stock of the products in three variant with 

value<200, 200<value<500 and value>500, fig.4. To 

compare the initial stocks, the command product and the 

optimized stock was designed LabView Vi-s from the fig.5. 



  

IV. CASE STUDY- STOCK OPTIMIZATION 

 

Fig.4. Border position of all analyzed data value- vs. stock in the analyzed 

company; optimal established points with red color. 

 
TABLE I: THE DATA OF VALUES AND STOCKS OF THE ANALYZED COMPANY  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

                                     

Fig.5. Zoom of the data in the first field value<200 with border values. 

Fig.6. The front panel of the LabView virtual instrument with results for 

Optimal Function (FO) established by using the ABC theory and BDSVM 

of data. 

 

a 

 

b 

c 

Fig.7. Front panel with results after was applied the FO to establish the 

optimal stock by using the BDSVM and ABC theory; a-the results for the 

value < 200; b- the results for the 200<value< 500; c-the results for the 

value >500. 

 

The results contents some characteristics after were applied 

the BDSVM mathematical complex model and was designed 

the value vs. stock points, see fig.4-5 and table I, to establish 

the core, the noises and optimal border. The optimal border, 



  

that was nominated in the paper like optimizing function 

(FO), was established after choose some points and construct 

one polynomial function with three order with constant 

coefficients and were determined them, see fig.6. The 

optimizing stock characteristics were design in figs.7, for all 

analyzed cases with ABC theory, with a-the results for the 

value < 200; b- the results for the 200<value< 500 and c-the 

results for the value >500. 

The obtained objective function (FO), by using the border 

points, considered important (meaningful) points is: 
 

𝐹𝑂 = −7.083𝑥3 + 11.08𝑥2 − 5.512𝑥 + 1.247            (14) 
 

Obs. All calculations were performed in normalized 

coordinates. All other choosing points must to respect strictly 

the constraint xi ∈ FO. 

After will be applied the proposed method will be obtained 

easily the convergence process for the used neural network 

that will be filtered the results. 

V. CONCLUSION 

The method shown in the paper, the results, the LabView 

Vi-s cover the theory to optimize the SVM, to establish the 

base density for the support vector for the machine learning 

(BDSVM) and open the way to optimize the stocks, reduce 

the financial effort of the companies and assure one optimal 

repartition of the products for each month, during the year. 

The proposed algorithm can be improved with new 

conditions so that the obtained results will be better filtered 

and the convergence of the applied neural networks will be 

better ensured. 
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