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Abstract—GNSS/INS Integrated Navigation systems 

mechanized for Land based applications face certain challenges 

especially near skyscraper, mountainous regions and high foliage 

environments wherein GNSS signals get interrupted. While INS 

and GNSS are widely used in augmentation but the integrated 

navigation solution can get compromised in GNSS-denied 

environments. This research work explores the integration of 

GNSS with low-cost MEMS INS and Zero Update Position and 

Timing (ZUPT) rendering a robust navigation solution for land 

applications. ZUPT is used to mitigate accelerometers and 

gyroscope biases and in turn alleviate the errors in position, 

velocity and attitude especially in a GNSS-denied scenario. ZUPT 

is enabled when the host vehicle stops and velocity of the host 

vehicle becomes zero. ZUPT corrections employing Kalman Filter 

algorithms significantly contains the accumulated errors in 

position, velocity and attitude. The study investigates the impact 

of different types of errors (random, fixed and growing) in GNSS 

including complete unviability on the INS/GNSS integrated 

solution. It has been observed that, when time growing errors are 

introduced in GNSS output, it has the worst effect on its overall 

accuracy. To counteract potential degradation in position 

computation ensuing from GNSS denial or interruption, this work 

corroborates the efficacy of ZUPT. ZUPT updates strengthen the 

system's robustness and accuracy of INS/GNSS Integrated 

solution. The proposed scheme can be employed for any land 

application including autonomous commercial land vehicles, 

navigation in tunnels, mining work and pedestrian navigation 

system etc. 

Keywords— GNSS, INS, Adaptive Kalman Filtering, Integrated 

Navigation, ZUPT, Data Fusion, MEMS IMU 

I. INTRODUCTION  

In the past few decades the commercialization of 
autonomous land vehicles has brought a profound interest in 
design of robust navigation systems. INS and GNSS are the most 
celebrated systems in the field of navigation in all mediums 
including land, air, space and submarine applications. INS offers 
a distinctive advantage as a self-contained system, providing all-
inclusive navigation solutions encompassing position, velocity, 
and attitude. However, relying on dead reckoning computations, 

INS is prone to unbounded error growth over time, due to the 
inherent biases in the sensors.  

In contrast, GNSS maintain its accuracy within a bound 
mitigating the issue of error growth associated with INS. 
Therefore, when INS and GNSS are synergistically integrated, 
an optimal navigation solution is obtained, especially when 
uninterrupted availability of GNSS signals is ensured. However, 
real world challenges such as signal jamming, spoofing, and 
obstruction of clear view of sky pose challenge to GNSS 
reliability. This is particularly troublesome for land vehicle 
navigation applications in environments including tunnels, 
skyscrapers, mountains and dense forests. Resultantly, for 
longer duration applications, there is high probability of 
encountering the segments, where the availability of GNSS is 
compromised.  

The zero velocity correction techniques can significantly 
improve the overall accuracy of land vehicle navigation. This is 
achieved by stopping the vehicle at certain periodic instances or 
at instances of user discretion. As the velocity becomes zero, this 
known information is fed as a measurement to the Kalman Filter 
algorithm used for computing and correcting GNSS and INS 
errors. This scheme significantly renders improved position, 
velocity and attitude solution. 

In this paper, effects of zero velocity correction are 
investigated by simulating different scenarios. To substantiate 
the presented scheme, first standalone MEMS INS solution is 
presented. Subsequently, INS is integrated with GNSS when 
uninterrupted GNSS signals are available. Next, the segments of 
GNSS unavailability are introduced and their effect is studied. 
Furthermore, zero velocity update is incorporated. First, just INS 
is corrected by zero velocity and then it is used to improve the 
performance of INS and interrupted GNSS integrated 
navigation. 

II. RELATED WORK 

Navigation in GNSS denied environments is a common 
problem being investigate and studied extensively by the 
navigators the world-over. A wide variety of solutions have been 
adopted to address this problem, ranging from incorporation of 
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different aiding sensors to the use of machine learning 
algorithms for containing INS error during GNSS outages.  

To ensure the robustness of land-based navigation using 
MEMS IMU and low cost GNSS receiver in urban environments 
with access to insufficient number of satellites, tightly coupled 
integration of INS and Precise Point Positioning (PPP) GNSS is 
performed using extended Kalman filter [1]. This technique 
improves the robustness of navigation solution at the cost of 
additional computational load. 

Mu et al [2] presented the application of vehicle mode 
recognition algorithm and non-holonomic constraints to 
maintain the accuracy of MEMS-INS/GNSS integrated 
navigation for land vehicle in urban settings with GNSS outages. 
The application of this technique is limited by the estimation the 
accuracy of heading misalignment. 

Another approach to maintain the accuracy of low-cost 
INS/GNSS solution in GNSS denied environment for land 
vehicles is presented by Chen et al [3]. The position drift during 
the GNSS outages was controlled by using the stochastic model 
of time-differenced GNSS carrier phase, non-holonomic 
constraints and odometer measurements. However, this 
algorithm is not robust to frequent GNSS outages. 

Chiang et al [4] developed a navigation system for land 
vehicle using smartphone sensors for GNSS challenging 
environments. The data of IMU, GNSS and cameras was 
integrated using EKF. The output of camera was processed by 
ORB-SLAM algorithm to compute velocity which was fed to 
the navigation algorithm. 

Yang et al [5] proposed a fault tolerant MEMS-INS/GNSS 
integrated navigation solution that is reliable under disturbances 
as well as partial and complete loss of GNSS data. It 
incorporates non-holonomic constraints and Allan-variance 
informed Kalman filter. 

Furthermore, support vector machine (SVM) algorithm was 
employed by Cong et al [6] to predict accumulation of MEMS-
INS error during the intervals of GNSS outages. Dai et al [7] 
demonstrated the application of recurrent neural networks 
(RNN) for INS/GNSS positioning in the absence of GNSS 
signals. Ushaq et al [8] investigated and mitigated the effect of 
slowly growing errors in GPS through adaptive Kalman 
Filtering algorithm. Another approach for successful positioning 
despite satellite faults and data contamination is proposed by Li 
et al [8]. To identify and exclude faulty GNSS measurements, 
graph optimization was used for tightly coupled integration of 
INS and GNSS. 

Most of the techniques employ either additional navigation 
aiding hardware or complex algorithm to maintain the accuracy 
of INS/GNSS positioning during GNSS outages. The additional 
sensors such as cameras, odometers and radars come with their 
own limitations, error sources and cost increment. The 
complexity of algorithms also directly translates into 
computational cost. Zero velocity correction offers unique 
advantages without needing additional hardware sensors or any 
significant increase in computational burden. Although it has 
been employed along with other aids in various schemes 
presented in literature, but there was a lack of in-depth study on 
zero- velocity correction and its direct impact on positioning 

accuracy during loss or contamination of GNSS signals which 
can be manifested in various forms. This study addresses this 
gap. 

III. INERTIAL NAVIGATION SYSTEM (INS) 

INS is based upon the input from three gyroscope and  three 
accelerometers. Gyroscopes measure angular rates, whereas 
accelerometers measure translational acceleration. Inertial 
Navigation algorithm is used to compute position, velocity and 
attitude from accelerometers and gyroscope output. In INS 
algorithm, the effect of gravity, earth’s rotation and Coriolis 
force are compensated from accelerometer and gyroscope 
output, to compute instantaneous kinematic acceleration in 
navigation frame.  

In this paper, these computations are performed in local level 
north pointing East-North-Up (ENU) frame using the following 
equations: 

𝛿𝑉𝑥̇ = 𝑓𝑥
𝑛  +  (2𝜔𝑖𝑒𝑒 𝑠𝑖𝑛𝜙 + 𝑉𝑥𝑡𝑎𝑛𝜙/𝑅𝑛ℎ)𝑉𝑦   −  (2𝜔𝑖𝑒𝑒 𝑐𝑜𝑠𝜙

+ 𝑉𝑥/𝑅𝑛ℎ)𝑉𝑧 

𝛿𝑉𝑦̇ = 𝑓𝑦
𝑛  −  (2𝜔𝑖𝑒𝑒 𝑠𝑖𝑛𝜙 + 𝑉𝑥𝑡𝑎𝑛𝜙/𝑅𝑛ℎ)𝑉𝑥   −  𝑉𝑦𝑉𝑧/𝑅𝑚ℎ 

𝛿𝑉𝑧̇ = 𝑓𝑧
𝑛  +  (2𝜔𝑖𝑒𝑒 𝑐𝑜𝑠𝜙 + 𝑉𝑥/𝑅𝑛ℎ)𝑉𝑥   +  𝑉𝑦

2/𝑅𝑚ℎ  −  𝑔𝑠

 (1-3) 

Here, fn is an accelerometer output transformed into navigation 

frame using direction cosine matrix computed from the output 

of gyroscope. �̇� is instantaneous kinematic acceleration. All 

other terms in the above equations account for non-kinematic 

accelerations, where: 

 

𝜔𝑖𝑒𝑒 : rotation of earth w.r.t inertial frame expressed in earth 

frame 

𝜙: latitude 

𝑅𝑚ℎ: meridian radius of earth 

𝑅𝑚ℎ: normal radius of earth 

 

The instantaneous acceleration can be integrated to compute 

velocity, which can be integrated again for position calculation. 

Due to this integration, the slight errors in sensors and non-

kinematic compensations accumulate significantly resulting in 

unbounded growth in final position and velocity errors. 

IV. GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS)  

GNSS is considered as the most popular and reliable 
navigation systems, presently. It relies on number of satellites 
orbiting around the Earth along know orbits with known Orbital 
(Keppler) parameters all the time. These satellites transmit 
signals traveling with the speed of light, containing the 
information including satellite position, transmission time and 
other parameters. The receivers at user location can compute 
their position by using the difference in transmission and arrival 
time employing TRILATERATION scheme. However, if errors 
are introduced anywhere during this process, they can degrade 
the accuracy of computed position [10].   

Clock errors: Satellite clocks are generally very accurate. If 
any deviation appears in them, monitoring stations estimate 
correction parameters and send them to the receivers. However, 
the receiver clocks are inexpensive to ensure affordability. 



Therefore, they have inherent biases, which if not compensated 
accurately, introduce error is the position estimation. 

Ionospheric and Tropospheric/Stratospheric Delays: The 
GNSS signals travel through the ionosphere. The ionization can 
affect the transit time of the signal. Since the ionization level 
keep on changing with the solar activity, the transit time error 
cannot be predicted precisely unless dual frequency receivers 
are used. Furthermore, variability in satellite elevation also 
affect the ionospheric delays. After ionosphere, signals have to 
cross the troposphere. Although troposphere is electron neutral, 
it introduces dry and wet components of errors as it slows down 
the signal because of it being refractive. 

Multipath error: It is a source of major concern in urban 
settings. Due to the tall buildings and other obstructions the 
GNSS signal is reflected. It reaches the receiver indirectly with 
a delay and higher signal to noise ratio. Apart from that, error is 
also introduced due to inherent noise in receiver caused by 
thermal noise, circuitry, signal sampling and quantization. 

Other types of GNSS errors include those due to jamming, 
spoofing and thermal variation in GNSS receivers. 

These errors manifest themselves in different forms in final 
position and velocity of GNSS. Sometimes the result in 
increased randomness in final solution, at other times fixed or 
growing errors are introduced. There are also cases when there 
is no output at all. 

V. ZERO UPDATE POSITION AND TIMING (ZUPT)  

ZUPT also known as zero velocity update is performed by 
stopping the vehicle or any other host system and getting 
information about zero velocity with certainty. This information 
can reduce the overall uncertainty in positioning which 
generally keeps on growing with time due to respective errors of 
INS and GNSS. 

In manual ZUPT application ZUPT is initiated at driver/user 
discretion after manual stopping of the vehicle. In automatic 
ZUPT applications, there are various ways to detect periodic 
zero velocity. Some are based on hardware and other are 
software based. In hardware-based methods, usually the output 
of odometer is used to infer the occurrences of zero velocity. The 
software-based techniques include adaptive thresholding, cycle 
segmentation, and other data driven classifiers [10]. 

VI. INS/GNSS/ZUPT INTEGRATION  

Kalman Filter algorithm is used for GNSS/INS/ZUPT 
Integration. It is a two-step predictor-corrector estimator. The 
first step involves prediction of the state and the second corrects 
it using the measurement. 

The predictor equations are:  

𝑥𝑘
-= 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1   (4) 

𝑃𝑘
- = 𝐴𝑃𝑘−1𝐴 𝑡 + 𝑄𝑘−1   (5) 

The corrector equations are:  

𝐾k = 𝑃k −Ht (H𝑃k −H + 𝑅)-1  (6) 

𝑥k = 𝑥k − + 𝐾k (𝑧k – H𝑥k
-)   (7) 

𝑃k = (𝐼 – 𝐾kH) 𝑃k
-   (8) 

In this paper, INS error equations are used in prediction 
mode. The correction is performed by using GNSS or zero-
velocity measurement. Here: 

𝑥𝑘  is error state vector and it is given as: 

𝑥𝑘 =
[𝜑𝑥 ,  𝜑𝑦 , 𝜑𝑧 , 𝛿𝑉𝑥

𝑔
, 𝛿𝑉𝑦

𝑔
, 𝛿𝑉𝑧

𝑔
, 𝛿𝜙, 𝛿𝜆, 𝛿ℎ, 휀𝑏𝑥, 휀𝑏𝑦, 휀𝑏𝑧, ∇𝑏𝑥, ∇𝑏𝑦 , ∇𝑏𝑧]

𝑇

 (9) 
Components of 𝑥𝑘 in (9) are errors in pitch, roll, yaw, east 

velocity, north velocity, up velocity, latitude, longitude, altitude, 
three gyro errors and three accelerometer errors, respectively. 

P is the error covariance matrix, which represent the 
estimated accuracy of the state vector. Its diagonal elements are 
variances of error of individual elements of the state vector. 

𝑃

= 𝑑𝑖𝑎𝑔[𝜎𝜑𝑥
2 , 𝜎 𝜑𝑦

2 , 𝜎 𝜑𝑧
2 , 𝜎

𝛿𝑉𝑥
𝑔

2 , 𝜎
𝛿𝑉𝑦

𝑔
2 , 𝜎

𝛿𝑉𝑧
𝑔 ,

2 𝜎𝛿𝜙
2 , 𝜎𝛿𝜆

2 , 𝜎𝛿ℎ
2 , 𝜎

𝑏𝑥
2 , … 

𝜎
𝑏𝑦
2 , 𝜎

𝑏𝑧
2 , 𝜎∇𝑏𝑥

2 , 𝜎∇𝑏𝑦

2 , 𝜎∇𝑏𝑧

2 ]  (10) 

Q is a process noise covariance matrix, representing 
uncertainty in the process model. In this case, it comprises of 
covariance of accelerometers and gyroscopes errors. 

𝑄 = 𝑑𝑖𝑎𝑔[𝜎𝑔𝑥
2 , 𝜎𝑔𝑦

2 , 𝜎𝑔𝑧
2 , 𝜎𝑏𝑥

2 , 𝜎𝑏𝑦
2 , 𝜎𝑏𝑧

2 ]     (11) 

For INS/GNSS integration, the measurement vector is given 
by: 

𝑧 =

[
 
 
 
 
 
 

𝑉𝑥,𝑖𝑛𝑠 − 𝑉𝑥,𝑔𝑝𝑠

𝑉𝑦,𝑖𝑛𝑠 − 𝑉𝑦,𝑔𝑝𝑠

𝑉𝑧,𝑖𝑛𝑠 − 𝑉𝑧,𝑔𝑝𝑠

𝜙𝑖𝑛𝑠(𝑅𝑚 + ℎ) − 𝜙𝑔𝑝𝑠(𝑅𝑚 + ℎ)

𝜆𝑖𝑛𝑠(𝑅 + ℎ)𝐶𝑜𝑠 𝜙𝑖𝑛𝑠 − 𝜆𝑔𝑝𝑠(𝑅 + ℎ)𝐶𝑜𝑠 𝜙𝑔𝑝𝑠

ℎ𝑖𝑛𝑠 − ℎ𝑔𝑝𝑠 ]
 
 
 
 
 
 

 (12) 

The measurement matrix which maps the measurement vector 
to state vector is given by H: 

𝐻 = [
03𝑥3 𝐼3𝑥3 03𝑥9

03𝑥6 𝑑𝑖𝑎𝑔(𝑅𝑚, 𝑅𝑛𝐶𝑜𝑠𝜙, 1 ) 03𝑥6
]   (13) 

The measurement noise covariance matrix, R, represent 
uncertainty in measurement. In this case, it is the error of GNSS 
output. It is given by: 

𝑅 = 𝑑𝑖𝑎𝑔[𝜎𝑉𝐺𝑥
2 , 𝜎𝑉𝐺𝑦

2 , 𝜎𝑉𝐺𝑧
2 , 𝜎𝜙𝐺

2 , 𝜎𝜆𝐺

2 , 𝜎ℎ𝐺

2 ]       (14) 

When zero velocity is detected: 

𝑧 = [

𝑉𝑥,𝑖𝑛𝑠

𝑉𝑦,𝑖𝑛𝑠

𝑉𝑧,𝑖𝑛𝑠

]   (15) 

 

𝐻 = [03𝑥3      𝐼3𝑥3      03𝑥9] (16) 

 

     𝑅 = 𝑑𝑖𝑎𝑔[𝜎𝑉𝐺𝑥
2 , 𝜎𝑉𝐺𝑦

2 , 𝜎𝑉𝐺𝑧
2 ] (17) 



VII. SIMULATIONS AND RESULTS 

The simulations for land vehicle navigation were performed 
in 2D for the period of about one hour. Initially the vehicle is 
stationary for 10 minutes. After accelerating, it moves in the 
direction of east for 10 minutes with the speed of 10m/s. Then it 
turns left and continues in the direction of north. After taking 
another left turn, it moves to west with the same uniform speed 
of 10m/s.  Finally, it turns to south and reach back to almost 
same point from where it started. Again some stationary data is 
recorded. 

The MEMS IMU with accelerometers of 0.2mg random bias 
and gyroscopes of 5o/hr random bias were used. The GNSS 
receiver with the of 25m random errors in position and 0.1 m/s 
random velocity error was incorporated.  

A. Standalone INS 

When only MEMS IMU is used for navigation, considerable 

error was introduced during first 10 minutes when the vehicle 

was stationary. The navigation solution does not follow the 

trajectory well, from the very beginning as shown in “Fig.1”. 

Although, the motion is in 2D, the vertical velocity escalates to 

150m/s as indicated by “Fig.2”. The “Fig.3” shows the 

introduction of maximum of 4km of error in latitude and around 

10km in longitude during 1 hour 

B. INS/GNSS Integration 

When INS and GNSS are integrated, the final navigation 

solution is almost coincident to ideal values as shown in 

“Fig.5”. The position errors converge to zero as depicted by 

“Fig .8”. This is the case only if GNSS is available without any 

interruptions. 

C. INS With Interrupted GNSS 

Due to the multitude of factors, an un-interrupted availability 
of GNSS is not possible in normal urban settings. As a result, 
different types of disturbances are introduced.  

In this case, there was interruption in GNSS from 18-25mins 
and then from 43-47 minutes. 

Case-1: In the first case, as a result of interruption, a random 
noise is introduced in the output of GNSS. Here, in the 
interrupted segment, the randomness in GNSS output was 
increased to 100 times. 

The effect of the randomness in GNSS is reflected in the 
final navigation solution. The INS/GNSS trajectory exhibit 

(“Fig.9”) some deviation from the ideal one. The velocity and 
position error clearly show the effect of randomness (“Fig.10”). 

Case 2: Instead of random errors, if growing errors are 

introduced in GNSS, they can create havoc as shown in 

“Fig.11”. Although Kalman filter tries to arrest the errors back 

as soon as GNSS become available again, but still the overall 

error significantly degrades the solution. 

D. INS/ZUPT Integration 

If standalone INS is aided by zero-velocity correction, it can 
somewhat reduce the final navigation errors. Here, the two 
important factors are the accuracy of INS sensors and frequency 
of zero-velocity. Increasing either of them, improves the final 
solution. However, the price of high accuracy INS becomes 
prohibitively high for most of applications. Increasing the 
frequency of zero-velocity correction is also not very feasible as 
it requires stopping the vehicle for some finite time. 

In this case, zero-velocity correction was performed after 
every 10 minutes. As vehicle was already stationary initially, it 
was stopped for first velocity correction after 20 mins (around 
1200 secs). After 20 minutes, the vehicle was decelerated, then 
stopped for one minute and then accelerated again. As it was 
stopped thrice, the overall time has increased for the same total 
distance. Every time, the vehicle is stopped, the error in velocity 
becomes zero. However, during the next 10 minutes interval, 
when it is operating under pure INS, the error grows again. As 
the time passes, the growth becomes more significant as shown 
in “Fig.14” and “Fig. 15”. 

The final trajectory of INS and zero velocity corrected 
solution does not coincide with the ideal trajectory, but still it is 
improved version of standalone (“Fig.13”) INS. If the frequency 
of zero velocity update or sensor accuracy is enhanced, even 
better results can be obtained. 

E. INS/Interrupted GNSS/ZUPT Integration 

When INS, GNSS with interruptions, and zero-velocity 
correction are integrated, the final navigation solution is 
significantly improved (“Fig.16”). 

When GNSS becomes unavailable, the error is introduced. 
However, if the zero-velocity correction of 1 minute after every 
20 minutes is performed, the final errors stays within bounds 
even if the GNSS interruption result in the growing errors. 
(“Fig.17” & “Fig.18”). 

 

.



 
Figure 1: Standalone INS Trajectory 

 

 
Figure 2: Standalone INS Velocity 

 

 
Figure 3: Standalone INS Position 

 
Figure 4: Position Error of Standalone INS 

 
Figure 5: INS/GNSS Integrated Trajectory 

 

 
Figure 6: INS/GNSS Integrated Velocity 



 
Figure 7: INS/GNSS Integrated Position 

 
Figure 8: Position Error of INS/GNSS Integration 

 
Figure 9: Trajectory of INS Integrated with GNSS having Random 

Errors 

 
Figure 10: Velocity of INS integrated with GNSS having Random 

Errors 

 
Figure 11: trajectory of INS integrated with GNSS having Growing 

Errors 

 
Figure 12: Velocity of INS integrated with GNSS having Growing 

Errors 



VIII.  

Figure 13: INS/ZUPT Trajectory 

 

Figure 14: INS/ZUPT Velocity 

 

Figure 15: INS/ZUPT Position Error 

 

Figure 16: INS/Interrupted GNSS/ZUPT Trajectory 

 

Figure 17: INS/Interrupted GNSS/ZUPT Velocity 

 

Figure 18: INS/Interrupted GNSS/ZUPT Position Error 



 

Figure 19: Comparison of Integration Schemes 

IX. CONCLUSION  

The standalone INS give the complete and self-contained 
navigation solution. But due to error accumulation, the INS 
solution after few minutes becomes overly erroneous for many 
practical applications, unless highly precise and expensive 
sensors are used. Therefore, in most scenarios, standalone INS 
is not employed. The integration of INS with GNSS is the most 
common practice since the two systems have complementary 
properties. Nevertheless, there are some sources of errors in 
GNSS as well which can manifest themselves in different forms. 
They can introduce growing errors in GNSS position and 
velocity, increase randomness by several orders of magnitude or 
can result in null output. In this paper, the two cases of 
manifestation of GNSS errors are studied. In case of increased 
randomness, the integrated trajectory does not deviate 
significantly. But when there is a growing error in GNSS, it 
completely deteriorates the navigation solution. If zero velocity 
update is incorporated by stopping the vehicle after some 
periodic intervals for a short time, the final solution can be 
significantly improved both in the case of growing and random 
errors. 
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