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ANALIZA SERVOSISTEMELOR 
 

Analiza servosistemelor presupune determinarea modului cum diverşii parametrii 

constructivi-funcţionali influenţează comportarea dinamică a servosistemelor, respectiv parametrii 

caracteristici generalizaţi şi performanţele caracteristice. 

Parametrii caracteristici generalizaţi şi performanţele caracteristice ale comportării 

dinamice, pot fi determinate prin metode grafo-analitice, prin analiza cu ajutorul caracteristicilor 

indiciale sau a caracteristicilor de frecvenţă, sau analitic, cu ajutorul funcţiilor de transfer. Deci o 

analiză completă a comportării dinamice a servosistemelor utilizate în acţionarea roboţilor şi 

manipulatoarelor presupune: -analiza cu ajutorul caracteristicilor indiciale; -analiza cu ajutorul 

funcţiilor de transfer; analiza cu ajutorul caracteristicilor de frecvenţă, etc. 

 

3.1. ANALIZA CU AJUTORUL CARACTERISTICILOR INDICIALE 

Analiza comportării dinamice pe baza caracteristicilor indiciale presupune mai întâi 

determinarea analitică a funcţiilor indiciale, pe baza schemelor bloc a servosistemelor supuse 

analizei. Această etapă este laborioasă datorită dificultăţii aplicării transformatei inverse Laplace 

mărimii de ieşire din cadrul servosistemului. În scopul aplicării transformatei inverse Laplace este 

necesară determinarea expresiei mărimii de ieşire e(s) sub forma unor sume de fracţii simple, pentru 

care există formule ale transformatei inverse Laplace. Este necesară deci determinarea mai întâi a 

polilor şi zerourilor funcţiei de transfer. 

Polii funcţiei de transfer sunt rădăcinile ecuaţiei caracteristice. Ecuaţia caracteristică este 

ecuaţia determinată de numitorul funcţiei de transfer şi reprezintă răspunsul libel al elementului sau 

sistemului. Zerourile funcţiei de transfer sunt rădăcinile ecuaţiei zerourilor. Ecuaţia zerourilor 

este determinată de numărătorul funcţiei de transfer şi reprezintă răspunsul forţat al elementului sau 

sistemului studiat. 

Coeficienţii funcţiei de transfer, exprimată sub forma unei sume de fracţii, se determină cu 

ajutorul extinderii teoremei Heaviside. 

Pentru cazul polilor singulari coeficienţii se determină cu ajutorul relaţiei: 

                                                 C s p e s s pi i i= + = −( ) ( )              (3.1) 

Pentru cazul polilor multipli de ordinul n se va utiliza relaţia: 
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Determinarea funcţiei indiciale a funcţiei de transfer cu inerţie de ordinul 1 

Pe baza expresiei funcţiei de transfer cu inerţie de ordinul 1, se determină expresia generală 

a mărimii de ieşire e(s): 
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Dacă se consideră mărimea de intrare, i(s) de tip treaptă unitară, se obţine:                                                                              
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Dacă se scrie expresia sub forma unei sume de fracţii, se obţine: 
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Coeficienţii se determină prin aplicarea extinderii teoremei Heaviside: 
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După înlocuiri rezultă expresia funcţiei indiciale cu inerţie de ordinul unu, de forma: 

 e t k e
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unde: k este răspunsul forţat, iar e-t/T – răspunsul liber al elementului sau sistemului. 

 Pe baza aceleaşi metodologii se determină expresia funcţiei indiciale şi pentru sisteme de 

ordinul 2 de forma: 
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unde: k este factorul total de amplificare; - factorul de amortizare; n- pulsaţia proprie.  

 

Analiza pe baza caracteristicilor indiciale 

Analiza parametrilor şi a performanţelor comportării dinamice ale servosistemelor pe baza 

caracteristicilor indiciale reprezintă de fapt analiza modului de variaţie a mărimii de ieşire în funcţie 

de timp. Caracteristicile indiciale pentru diverse mărimi de intrare sunt prezentate în fig.3.1 a,b,c:   
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Fig3.1 Caracteristici indiciale pentru diverse mărimi de intrare 

 

În urma analizării caracteristicilor indiciale se pot trage următoarele concluzii asupra 

parametrilor caracteristici generalizati: 

    -timpul de creştere (timpul după care mărimea de ieşire creşte de la 0.1 la 0,9 din valoarea 

staţionară) şi care exprimă promptitudinea servosistemului studiat; se determină intersectând 

orizontala corespunzatoare mărimii de ieşire staţionară, cu caracteristica indicială; 

 Pentru o funcţie de transfer cu inerţie de ordinul 1 acesta rezultă analitic cu relaţiile: 
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Timpul de creştere în acest caz va fi: 

         Ttt 2.212 =− .             (3.7) 

    -timpul tranzitoriu tt (timpul după care mărimea de ieşire are o valoare cuprinsă între +5% şi –

5% din valoarea staţionară); se determină intersectând caracteristica indicială cu domeniul 

determinat de valoarea +5% şi –5%, din valoarea mărimii de ieşire staţionară; 

Pentru o funcţie de ordinul 1 acesta se determină cu relaţia: 
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iar pentru o funcţie de ordinul 2, cu relaţia: 
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    -factorul total de amplificare k (factorul de amplificare al mărimii de intrare); se determină cu 

ajutorul modelului matematic, anulând toţi termenii conţinând derivate; 

    -eroarea staţionară   (eroarea mărimii de ieşire faţă de valoarea teoretică); se determină cu 

relaţia: 

                                                     = −kx x ti e t( )                                             (3.10) 

şi exprimă precizia servosistemului analizat; 

    -factorul de amortizare  (factorul care asigură rezolvarea compromisului optim precizie-

stabilitate); se determină cu relaţiile: 
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    -suprareglajul  reprezintă abaterea maximă a mărimii de ieşire faţă de mărimea de ieşire 

staţionară. Relaţia de calcul a suprareglajului rezultă ca diferenţă între valoarea maximă a mărimii 

de ieşire şi valoarea staţionară. Pentru determinarea suprareglajului se determină mai întâi constanta 

de timp pentru care mărimea de ieşire este maximă. Aceasta se determină din condiţia de anulare a 

primei derivate a mărimii de ieşire: 

0=
dt

de
, unde mărimea de ieşire pentru un sistem oscilant amortizat, are expresia 
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Rezultă în final: 
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În acest caz constanta maximă de timp se va exprima prin:  
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Suprareglajul se determină cu relaţia: 
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În final se obţine relaţia pentru determinarea suprareglajului, de forma: 
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    -pulsaţia naturală n, reprezintă modul în care mărimea de ieşire oscilează, în perioada 

tranzitorie, fără amortizare, şi se determină cu relaţia: 
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servosistemele cu pulsaţii naturale mari sunt foarte precise, foarte prompte, dar apropiate de limita 

de stabilitate. 

    -pulsaţia proprie p reprezintă pulsaţia cu care oscilează mărimea de ieşire cu amortizare şi se 

determină cu relaţia: 
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, sau  21  −= np          (3.17) 

    -pulsaţia de rezonanţă r reprezintă pulsaţia la care amplitudinea răspunsului este maximă şi se 

determină cu relaţia aproximativă: 

                                                  R n= −1 2 2
                                         (3.18) 

 

Analiza performanţelor pe baza caracteristicilor indiciale 

Analiza performanţelor caracteristice ale unui servosistem  presupune studiul: -preciziei;  

-promptitudinii;  stabilităţii; -capacităţii de urmărire. 

 

Analiza preciziei servosistemelor cu ajutorul caracteristicilor indiciale presupune a se 

determina eroarea staţionară pentru intrare de tip treaptă, pentru diverse valori ale parametrilor 

constructivi-funcţionali. Eroarea staţionară se determină cu ajutorul relaţiei (3.10), coeficienţii 

acesteia fiind determinaţi prin analiza caracteristicilor indiciale. Servosistemul va fi mai precis cu 

cît eroarea staţionară de poziţie (intrare de tip treaptă), va fi mai mică. 

Stabilitatea unui servosistem presupune capacitatea servosistemului de a atenua 

amplitudinea oscilaţiilor răspunsului, după o periodă de timp, strict definită ca fiind perioda 

tranzitorie de funcţionare.  

Un servosistem este mai stabil cu cît răspunsul se amortizează într-o perioadă tranzitorie mai 

mică. Servosistemul va funcţiona instabil, dacă amplitudinea oscilaţiilor în loc să se atenueze, se 

amplifică. În acest caz, perioada de funcţionare în regim oscilatoriu este nelimitată. Curba 

înfăşuratoare a oscilaţiilor răspunsului, pentru funcţionare instabilă este e aat_( ) 0 , deci o funcţie 

exponenţială divergentă. Trasând caracteristicile indiciale pentru diverse valori ale parametrilor 

constructivi-funcţionali, se vor putea determina influenţele acestora asupra funcţionării stabile a 

servosistemului. 

Analiza promptitudinii presupune a se determina viteza cu care un servosistem răspunde 

unei mărimi de intrare. Timpul de creştere este parametrul din cadrul caracteristicii indiciale care 

oferă informaţii privind promptitudinea servosistemului. Cu cît timpul de creştere va fi mai mic, cu 

atît se poate aprecia că servosistemul este mai rapid, dar mai apropiat de limita de stabilitate, 

întrucât creşte foarte mult suprareglajul, şi deci implicit, numărul de oscilaţii din perioada 

tranzitorie. 

Deseori însă nu interesează numai un anumit parametru sau performanţă a comportării 

dinamice a servosistemului, ci un set de performanţe, de exemplu interesează ca servosistemul să fie 
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foarte prompt, precis şi stabil. După cum se observă unele din aceste performanţe se exclud 

reciproc, deci chiar dacă s-a determinat, din cadrul etapei de analiză, modul cum parametrii 

constructivi-funcţionali influenţează comportarea dinamică a servosistemelor, totuşi va fi destul de 

dificil să se determine valoarea acestora în aşa fel încât să fie obţinute performanţele dorite. În 

scopul determinării optime a parametrilor constructivi-funcţionali care asigură obţinerea 

performanţelor dinamice necesare, se va aplica metoda deciziei multiatribut. Această metodă 

asigură alegerea variantei optime, din mai multe variante posibile, varintă care să fie cea mai 

apropiată de funcţionarea optimă din punct de vedere dinamic a servosistemului analizat. 

 

3.2. ANALIZA SERVOSISTEMELOR CU AJUTORUL FUNCŢIILOR DE 

TRANSFER 

Funcţia de transfer a unui element sau servosistem este reprezentată prin raportul dintre 

transformata Laplace a răspunsului şi transformata Laplace a semnalului. Expresia generală a unei 

funcţii de transfer în circuit deschis este de forma: 
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unde: m este gradul polinomului de la numărătorul funcţiei de transfer şi reprezintă numărul 

zerourilor cu efect anticipativ, polinomul reprezentând componenta forţată a răspunsului; n- gradul 

polinomului de la numitorul funcţiei de transfer şi reprezintă numărul polilor cu efect inerţial, 

polinomul reprezentând componenta liberă a răspunsului; - ordinul de astatism şi determină 

numărul polilor în origine. 

Prin statism se înţelege că răspunsul elementului sau sistemului, pentru o anumită mărime 

de intrare, are eroare staţionară, care pentru intrare de tip treaptă se numeşte eroare de poziţie, 

pentru intrare de tip rampă se numeşte eroare de viteză, iar pentru intrare de tip parabolă se 

numeşte eroare de acceleraţie. Prin astatism de ordinul unu se înţelege că elementul sau sistemul 

respectiv nu are eroare de poziţie (pentru intrare de tip treaptă), iar pentru cele cu astatism de 

ordinul doi, nu are eroare de viteză (pentru intrare de tip rampă), respectiv pentru cele cu 

astatism de ordinul trei, nu are eroare de acceleraţie (pentru intrare de tip parabola). 

      

Analiza comportării dinamice cu ajutorul funcţiilor de transfer 

Analiza comportării dinamice cu ajutorul funcţiilor de transfer presupune determinarea 

funcţiilor de transfer în circuit deschis şi închis urmată de determinarea parametrilor şi a 

performanţelor, pe baza  

expresiei funcţiilor de transfer determinate.     

Determinarea parametrilor caracteristici generalizaţi pe baza expresiei funcţiilor de 

transfer presupune: -determinarea factorului de amplificare în circuit deschis, prin calculul limitei 

funcţiei de transfer în circuit deschis: 

k H sD
s

d=
→

lim ( )
0

                                                   (3.21)  

-determinarea factorului de amplificare în circuit închis, prin calculul limitei funcţiei de transfer în 

circuit închis: 
k H sI

s
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-determinarea factorului total de amplificare: 
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-determinarea constantei totale de timp: 
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Dacă funcţia de transfer este o funcţie de tip proporţională cu inerţie de ordinul doi (cea mai 

întâlnită în analiza elementelor şi sistemelor) de forma: 
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se pot defini şi următorii parametrii caracteristici generalizaţi: 

-pulsaţia naturală: 
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-pulsatia proprie: 
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-pulsatia de rezonanta: 
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unde x=1.91 pentru =0.3; x=1.94 pentru =0.4; x=1.95 pentru =0.5; x=1.98 pentru =0.6;         

x=2.0004 pentru =0.7. 

-pulsaţia critică este pulsatia oscilaţiei răspunsului de la care amplitudinea scade cu 3dB/decadă; 

-timpul tranzitoriu:    
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-suprareglajul-reprezinta abaterea maxima a oscilatiei raspunsului fata de valoarea stationara si are 

expresia : 
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 Schemele bloc utilizate frecvent în cadrul modelării servosistemelor sunt constituite din 

elemente de tip dipolar, mult mai uşor de folosit. Însă, aceste elemente oferă informaţii trunchiate 

dătorită aproximărilor introduse. Elementele de tip dipol sunt caracterizate de o mărime de intrare şi 

de o mărime de ieşire, comparativ cu elementele de tip multipolar, mult mai apropiate de 

comportarea reală, care au mai multe mărimi de intrare şi mai multe mărimi de ieşire. În fig.3.2 este 

reprezentat un element de dip dipolar, iar în fig.3.3 este reprezentat un element de tip multipolar. 
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Fig.3.2 Schema unui element de tip dipol  Fig.3.3  Schema unui element de tip sexapol 

 

Elementele de tip multipolar asigură analiza completă a comportării dinamice, prin 

considerarea atât a canalului de transmiterea informaţiei de mişcare, cât şi pe cea a canalului de 

transmiterea informaţiei de efort. În acest mod se poate pune în evidenţă foarte uşor interdependenţa 

dintre intrările şi ieşirile pe fiecare din cele două canale informaţionale, cât şi interdependenţa între 
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cele două canale informaţionale. Întrucât modelarea cu ajutorul elementelor multipolare utilizează 

calculul matricial pentru determinarea funcţiilor de transfer, modelarea este mult mai greoaie fără 

utilizarea programelor specializate de calcul, motiv pentru care, cu unele aproximări, se poate 

utiliza modelul de tip dipolar. 

În cazul modelării sexapolare, expresia funcţiei de transfer este: 
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iar mărimea de ieşire exprimată matriceal: 
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 Pentru un element sau sistem, modelat cu elemente de tip multipolar, expresia generală a 

mărimii de ieşire este: 
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iar funcţia de transfer Hij se determină cu relaţia: 
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În fig.3.4 este evidenţiat un sistem cu trei funcţii de transfer de tip dipol şi o reacţie externă. 
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Fig.3.4 Schema bloc a unui sistem cu legătură de reacţie externă 

 

H1 este funcţia de transfer a corecţiei şi regulatorului; H2 - funcţia de transfer a elementului de 

execuţie şi a organului mobil; H3 -funcţia de transfer a traductorului; i - mărimea de intrare; e – 

mărimea de ieşire; r- mărimea de reacţie;  - eroarea. 

Funcţia de transfer în circuit închis este definită ca fiind raportul dintre transformata Laplace 

a mărimii de ieşire şi transformata Laplace a mărimii de intrare. Funcţia de transfer are expresia: 
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Funcţia de transfer în circuit deschis este raportul dintre transformata Laplace a reacţiei şi 

transformata Laplace a erorii. Funcţia de transfer are expresia: 
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
1 2 3                                         (3.35) 
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În acest caz funcţia de transfer în circuit închis se mai poate exprima: 

                                                        H s
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                                                  (3.36) 

În caz general, pentru un sistem cu mai multe bucle de reacţie, funcţia de transfer în circuit 

închis este: 
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unde: Hdir(s) este funcţia de transfer în circuit direct între intrare şi ieşire; Hr1(s)- funcţia de transfer 

a buclei de reacţie r1, cea mai interioară; Hrn(s)- funcţia de transfer a buclei de reaţie externă. 

Determinarea performanţelor servosistemelor cu ajutorul funcţiilor de transfer 

presupune determinarea: preciziei, promptitudinii, stabilităţii şi capacităţii de urmărire. 

Determinarea preciziei servosistemelor cu ajutorul funcţiilor de transfer presupune 

calculul erorii staţionare. În acest scop se va determina expresia erorii staţionare funcţie de mărimea 

de intrare. Pe baza schemei bloc din fig.3.4 se scrie: 
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Întrucât interesează eroarea staţionară în domeniul real, se aplică teorema valorii finale 

funcţiei care exprimă eroarea, deci se scrie: 
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Calculul erorii staţionare de poziţie pentru un sistem cu astatism de ordinul zero 

Întrucât se studiază eroarea staţionară de poziţie, mărimea de intrare este de tip treaptă. 

În acest caz relaţia (3.39) se scrie: 
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Eroarea staţionară de poziţie în acest caz (a servosistemelor cu astatism de ordinul zero) este 

minimă în cazul în care factorul de amplificare în circuit deschis este maxim, deci şi k1, k2, k3, 

factorii de amplificare ai fiecărei funcţii de transfer, sunt maximi. 

 

Calculul erorii staţionare de poziţie pentru un sistem cu astatism de ordinul unu 

Funcţia de transfer în circuit deschis, în cazul în care sistemul are astatism de ordinul unu 

are expresia: 
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Eroarea staţionară în acest caz va fi: 
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Sintetic, eroarea pentru diverse ordine de astatism şi pentru diverse intrări, este prezentată în 

tabelul 3.1. 
           Tabelul 3.1 

Nr.crt. Sistem cu statism  Sistem cu astatism  

de ordinul 1 

Sistem cu astatism 

de ordinul 2 

Sistem cu astatism  

de ordinul 3 
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Eroare de 

poziţie 
dk+1

1
 

 

0 

 

0 

 

0 

Eroare de 

viteză 

 

 

 
dk

1
 

 

0 

 

0 

 

Eroare de 

acceleraţie 

 

 

 

 

 

 

 

dk

1
 

 

0 

 

Determinarea promptitudinii servosistemelor cu ajutorul funcţiilor de transfer, se 

efectuează prin determinarea constantei de timp. Se va aprecia că un servosistem este mai prompt 

cu cît constanta de timp este mai mică. Constanta de timp este minimă dacă factorul de amplificare 

este maxim. Cu cît creşte factorul de amplificare, servosistemul va fi mai prompt, mai precis, dar 

mai apropiat de limita de stabilitate. 

Determinarea stabilităţii servosistemelor cu ajutorul funcţiilor de transfer, constă în 

aplicarea criteriului algebric de stabilitate, Routh- Hurwitz. 

Condiţia necesară şi suficientă pentru ca un sistem să fie stabil este ca toţi polii funcţiei de 

transfer Hd(s), să fie situaţi în semiplanul stîng al planului complex. Celelalte criterii de stabilitate 

au fost amintite în cadrul celorlaltor moduri de analiza a servosistemelor. 

     

            Studiul cu ajutorul metodei locului rădăcinilor 

  Locul rădăcinilor reprezintă locul geometric al rădăcinilor ecuaţiei caracteristice (ecuaţia 

polilor) şi a ecuaţiei zerourilor, atunci cînd coeficienţii acestor ecuaţii sunt parametrizati funcţie de 

un anumit parametru a cărui valoare va fi modificat între anumite limite. Aceste limite sunt stabilite 

funcţie de domeniul de interes specificat în tema de proiectare, valori care pot fi obţinute fizic. Cu 

ajutorul metodei locului rădăcinilor se poate determina, ţinând cont de semnificaţia elementelor 

legate de poziţia polilor şi a zerourilor în planul poli-zerouri, valoarea maximă a factorului de 

amplificare sau a oricărui alt factor constructiv-functional, care să rezolve compromisul optim 

precizie-stabilitate. 

Cu cît servosistemul va fi mai precis, va fi mai prompt, dar mai apropiat de limita de 

stabilitate, iar locul rădăcinilor mai apropiat de axa imaginară. 

Metoda locului rădăcinilor, constă în determinarea locului geometric al polilor şi zerourilor 

funcţiei de transfer a servosistemului, atunci cînd toţi polii şi zerourile sunt exprimate funcţie de un 

acelaşi parametru constructiv-funcţional, iar acestuia i se impune o variaţie între limitele de interes 

stabilite prin tema de proiectare. 

În aplicaţiile care urmează, rezolvate cu ajutorul unor programe realizate în MathCad, 

LabView, pentru cazuri concrete, se poate constata modul cum este influnţată comportarea 

dinamică a elementului de execuţie, de anumiţi parametrii constructiv- funcţionali. 

Cu ajutorul acestei metode se va putea optimiza comportarea dinamică şi stabili valoarea 

parametrilor constructivi-funcţionali în aşa fel încât funcţionarea să fie optimă.    

Domeniul de variaţie al parametrilor constructivi-funcţionali se stabileşte funcţie de aplicaţia 

în care se implementează servosistemul, de condiţia de realizare fizică a servosistemului, de 

componentele constructiv-funcţionale ale servosistemului, de domeniul de lucru, etc. 

Prin studiul asistat al locului rădăcinilor, împreună cu caracteristicile Bode şi locul de 

transfer Nyquist, se va putea determina compromisul optim precizie-stabilitate, funcţie de aplicaţia 

robotului în cadrul celulei de fabricaţie flexibilă. 

 Se consideră un sistem, care poate fi aproximat printr-o funcţie de transfer de tip (PT3), 

proporţională cu inerţie de ordinul 3, de forma: 

                                             H s
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unde: Ti1,i2 sunt constantele inerţiale, iar k este factorul de amplificare. Funcţia de transfer are un pol 

real şi doi poli complex conjugaţi. Existenţa polilor complex-conjugaţi determină oscilaţia mărimii 

de ieşire. Se consideră cazul cel mai defavorabil şi anume că frecvenţa, la care apare oscilaţia 

răspunsului sistemului, este joasă. Dacă aceşti coeficienţi, determinaţi după aplicarea transformatei 

Laplace, modelului matematic determinat pentru funcţionarea în regim dinamic a sistemului, pot fi 

exprimaţi în funcţie de un parametru variabil p, a cărui influenţă asupra comportării dinamice a 

sistemului se doreşte a fi cercetată, funcţia de transfer poate fi exprimată astfel: 
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spTspTspT

k
sH

iiii

 

După trasarea asistată a locului rădăcinilor ecuaţiei polilor şi a zerourilor pentru cazul în 

care parametrul p variază în domeniul pmin şi pmax, se va obţine un număr de curbe egal cu numărul 

polilor reali şi a celor complex-conjugaţi. Se consideră alura locului rădăcinilor ca fiind cea din 

fig.3.5.  

Punctele P1 şi P2, determinate de intersecţia dintre ramurile locului rădăcinilor 

corespunzător polilor complex-conjugaţi, cu razele vectoare trasate pentru valorile unghiulare de 

+530…-530 (corespunzătoare unui factor de amortizare, =0.6), exprimă limita de precizie-

stabilitate, sistemul este precis, prompt şi stabil. În afara aceastei limite unghiulare, sistemul este 

mai precis, dar funcţionarea este mai apropiată de limita de stabilitate absolută, domeniu determinat 

de axa imaginară a planului complex. 

 Punctele P3 şi P4, determinate de intersecţia ramurilor locului 

rădăcinilor complex-conjugate cu axa imaginară, exprimă limita maximă 

de stabilitate. Pentru acestă poziţie a polilor, sistemul lucrează foarte 

precis, foarte rapid, dar vulnerabil la orice factor perturbator care poate 

provoca instabilitate. Limita determinată de razele vectoare trasate pentru 

+370 şi  

–370 (limită determinată de un factor de amortizare, =0.8) este limita 

inferioară de precizie- stabilitate, sistemul fiind mai lent, cu o precizie mai 

slabă, o promptitudine mai mică, dar mai stabil. În afara acestei limite, 

deci către poziţii unghiulare mai mici, elementul sau sistemul este foarte 

lent, lucrează foarte amortizat. Totodată, cu ajutorul locului rădăcinilor se 

va putea stabili, domeniul de variaţie al frecvenţei proprii, al frecvenţei de 

tăiere, al frecvenţei naturale, acestea fiind exprimate de ordonata, abscisa, 

respectiv raza vectoare al fiecărui punct al locului rădăcinilor. Totodată se 

va putea stabili şi domeniul de variaţie al factorului de amortizare exprimat de cosinusul unghiului 

dintre raza vectoare şi fiecare punct al locului rădăcinilor. Prin cunoaşterea frecvenţei proprii şi 

maximizarea acesteia, se va putea obţine o mărire a domeniului de frecvenţă în care poate lucra 

sistemul şi deci o mărire a preciziei şi a promptitudinii acestuia.      

   

  3.3. ANALIZA CU AJUTORUL CARACTERISTICILOR DE FRECVENŢĂ 

În tehnica analizei şi sintezei servosistemelor unele performante ale comportarii dinamice nu 

pot fi determinate decît prin analiza caracteristicilor de frecvenţă. Aceste caracteristici arată modul 

cum variază amplitudinea şi faza răspunsului cu frecvenţa. Cu ajutorul acestor caracteristici, se pot 

determina marja de stabilitate şi precizie, capacitatea de urmărire, promptitudinea, etc. 

     

Analiza cu ajutorul locului de transfer (caracteristica Nyquist) 

Locul de transfer sau caracteristica Nyquist este construită pentru funcţia de transfer în 

circuit deschis Hd(s) pentru un anumit domeniu de variaţie al pulsaţiei sau frecvenţei şi este 

reprezentată de variaţia amplitudinii (a modulului funcţiei de transfer în circuit deschis) cu 

frecvenţa. Caracteristica mai este cunoscută şi sub denumirea de caracteristica amplitudine-fază A(
), sau hodograful funcţiei de transfer. Caracteristica este construită în coordonate polare, raza fiind 

determinată de amplitudine, iar unghiul, de fază. 
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     Fig.3.5 Locul rădăcinilor   

    pentru o funcţie de tip PT3 
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Amplitudinea şi faza se determină cu relaţiile: 
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                             (3.43) 

Caracteristica Nyquist pentru o funcţie de transfer cu inerţie de ordinul doi este reprezentată 

în fig.3.6. 
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Fig.3.6 Caracteristica Nyquist pentru o funcţie de transfer de ordinul 2 

 

Amplitudinea maximă reprezintă amplitudinea la pulsaţia de rezonanţă, iar faza 

corespunzatoare acestei pulsaţii reprezintă faza la rezonanţă. 

Pulsaţia de rezonanţă se poate determina şi prin compararea distanţei dintre punctele 

învecinate ale caracteristicii. Astfel, în cazul în care distanţa dintre două puncte învecinate de pe 

locul de transfer este maximă, acel punct reprezintă punctul în care amplitudinea este maximă, deci 

punctul frecvenţei de rezonanţă.  

Servosistemele mecanice au bucla de amplitudine maximă deplasată către dreapta, deci către 

frecvenţe mai joase (frecvenţe de rezonanţă mai joase), comparativ cu servosistemele electro-hidro-

mecanice, fig.3.7. 
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         a mecanice    b electro-hidro- mecanice 
 

                             Fig.3.7 Caracteristicile Nyquist pentru diverse sisteme  
  

Desenarea rapidă a locului de transfer, presupune determinarea coeficienţilor  şi  

cunoscându-se expresia funcţiei de transfer în circuit deschis Hd(s). 

Dacă scriem funcţia de transfer în circuit deschis Hd(s) sub forma: 

H s
s

P s

P s
d

m

n
( )

( )

( )
= 

1
  

 fiind: 

                                                      = + −n m            (3.44) 

unde:  este ordinul de astatism; n- numărul polilor; m- numărul zerourilor. Funcţie de valoarea lui 

 şi , locul de transfer va tinde asimptotic către axele de coordonate ca în fig.3.8. 
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Fig.3.8 Schema de trasare rapidă a caracteristicilor Nyquist 

 

În cazul unui sistem mecanic general fig.3.9, modelul matematic este: 

m
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kx Fe e
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+ + =                            (3.45) 
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Fig.3.9  Schema bloc a unui sistem mecanic 

 

unde: m este masa elementului; xe- deplasarea elementului considerată ca mărime de ieşire; h- 

factorul de amortizare vîscoasă; k- constanta elastică a arcului; Fax- forţa excitatoare considerată ca 

mărime de intrare. 

În acest caz, funcţia de transfer în circuit deschis va avea expresia:                         
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    (3.46) 

unde: n- pulsaţia naturală a sistemului vibrator; r- pulsaţia de rezonanţă; x - factor care poate 

avea următoarele valori, funcţie de factorul de amortizare  , 1.9…2.0004. [20]  

Funcţie de factorul de amortizare, locul de transfer va avea alurile ca în fig.3.10. 
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                   Fig.3.10 Caracteristicile Nyquist  trasate pentru diverse valori ale factorului de amortizare  1 < 2 < 3 

 

Între modelele mecanice, electrice şi fluidice există următoarea analogie [3]: 

  -ecuaţia generală pentru modelul electric este: 

idt
Cdt

di
LRiU ++=

1
                                  (3.47) 

  -ecuaţia generală pentru modelul hidraulic este: 

                                        Qdt
V

E
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dQ
LQRp Hh ++=         (3.48) 

   -ecuatia generala pentru modelul mecanic este : 

                                           F h
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m

d x
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kx= + +

2

2           (3.49) 

unde: U este tensiunea de alimentare a circuitului electric [V];R- rezistenţa circuitului []; i- 

intensitatea curentului electric [A]; C- capacitatea circuitului [F]; L- inductanţa circuitului [H]; p- 

presiunea circuitului hidraulic [N/m2]; Rh- rezistenţa circuitului hidraulic [Ns/m5]; Q- debitul din 

circuitul hidraulic [m3/s]; Lh- inertanţa circuitului hidraulic [Ns2/m5]; E- modulul de elasticitate al 

uleiului [N/m2]; V-volumul comprimat de fluid [m3]; F- forţa de excitaţie [N]; h- coeficientul de 

frecare vîscoasă [Ns/m]; x- deplasarea elementului mobil [m]; m- masa elementului mobil [Ns2/m]; 

k- constanta elastică a arcului [N/m]. 

Astfel, elementele disipative de natură electrică, hidraulică, mecanică sunt determinate de: 

                                        R
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elementele acumulatoare de energie cinetică de natură electrică, hidraulică, mecanică 

sunt determinate de: 
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elementele acumulatoare de energie potentiala de natură electrică, hidraulică, mecanică 

sunt determinate de: 
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Determinarea preciziei unui servosistem cu ajutorul caracteristicii Nyquist se realizează 

prin determinarea grafică a erorii staţionare. În prealabil, se determină, analitic sau prin analiza 

caracteristicii indiciale, timpul tranzitoriu, apoi pulsaţia corespunzatoare acestei constante de timp, 

folosind relaţia: 

                                                             


=
2

tt

           (3.53) 

Se localizează pe locul de transfer, punctul a cărui pulsaţie este cea anterior determinată şi se 

trasează un cerc cu raza egală cu amplitudinea corespunzatoare pulsaţiei la timpul tranzitoriu. Prin 

însumare grafică, se determină eroarea staţionară cu relaţia: 

                                            st i v d tx k H j
t

=  − ( )                    (3.54)             

unde: xI este mărimea de intrare; kv- factorul de amplificare; tt- pulsaţia la timpul tranzitoriu, 

fig.3.11. 
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                       Fig.3.11 Determinarea grafo-analitică a erorii staţionare cu ajutorul caracteristicii Nyquist 
 

Studiul stabilităţii cu ajutorul caracteristicii Nyquist constă în verificarea criteriilor de 

stabilitate Nyquist. Criteriul de stabilitate generală Nyquist arată că, dacă funcţia de transfer în 

circuit deschis are un număr de poli reali pozitivi, servosistemul este stabil, dacă locul de transfer 

ocoleşte prin dreapta în sens antiorar, punctul de coordonate (-1,0) de un număr de ori egal cu 

numărul polilor reali pozitivi. Criteriul de stabilitate Nyquist arată că un servosistem cu poli reali 

negativi sau poli complex-conjugaţi, cu partea reală negativă, este stabil dacă, locul funcţiei de 

transfer în circuit deschis, ocoleşte prin dreapta, punctul de coordonate (-1,0). Aceasta îşi găseşte 

justificarea în faptul că, prin trecerea locului de transfer prin punctul (-1,0), eroarea staţionară 

devine infinită şi deci servosistemul devine  instabil. 

Marja de stabilitate şi precizie se determină prin aflarea marginii de fază şi a marginii de 

cîştig. Marginea de fază şi marginea de cîştig pot fi urmărite în fig. 3.12 şi se determină cu relaţiile: 
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                       a sistem proporţional cu inerţie de ordinul 2  b sistem proporţional cu inerţie de ordinul 3     

   Fig.3.12 Marginea de cîştig şi marginea de fază pentru diverse sisteme 
 

Marginea de fază se defineşte ca fiind pozitia unghiulară a razei vectoare, care trece prin 

punctul de intersecţie al locului de transfer, cu cercul cu raza egală cu unitatea, faţă de semiaxa 

reală negativă. 

Marginea de cîştig este determinată de diferenţa dintre amplitudinea unitară şi amplitudinea 

locului de transfer, la pulsaţia corespunzătoare fazei de 180.  

În scopul rezolvării compromisului optim precizie-stabilitate, marginea de fază trebuie să fie 

cuprinsă între: 

25 450 0 M           (3.56) 

iar marginea de cîştig: 

0.2 < Mc < 0.3          (3.57)  

Un servosistem este mai precis şi mai prompt cu cît marginea de fază se aproprie de 

marginea superioară (M=450), iar marginea de cîştig se apropie de limita inferioară (Mc= 0.2), dar 

în acest caz, comportarea servosistemului este mai apropiată de limita de stabilitate, iar răspunsul se 

atenuează după o perioadă mai lungă de timp. Un servosistem este mai stabil cu cît marginea de 
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cîştig este mai apropiată de valoarea 0.3, iar marginea de fază de limita inferioară. În acest caz 

servosistemul este mai lent şi mai puţin precis, iar oscilaţiile răspunsului se atenuează mult mai 

repede. 

  

Analiza performanţelor cu ajutorul caracteristicii reale de frecvenţă 

Caracteristica reală de frecvenţă reprezintă variaţia părţii reale a funcţiei de transfer în 

circuit închis, funcţie de frecvenţă. Dacă se consideră un servosistem cu reacţie unitară de forma 

celui din figura 3.13. 
+

-

Hd(s)

r

i e

 
Fig. 3.13 Schema bloc sistem cu reacţie unitară 

 

funcţia de transfer în circuit închis va avea expresia: 

H s
H s

H s
i

d

d

( )
( )

( )
=

+1
                                                 (3.58) 

Dacă se ţine cont de imaginea în planul complex a functiei de transfer în circuit deschis de 

forma: 

                                              H s u jvd( ) ( ) ( )= +                                              (3.59)   

după înlocuirea în expresia (3.58) şi raţionalizarea acesteia, se obţine: 

H j
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                 (3.60) 

unde P() este partea reală a funcţiei de transfer în circuit închis a servosistemului analizat. P() = 

k  reprezintă o familie de cercuri tangente la dreapta u = -1. 

Ecuaţia generală a cercului cu centrul în punctul de coordonate (a,b), funcţie de sistemul 

axelor de coordonate u şi v, este: 

                                            ( ) ( )u a v b r− + − =2 2 2
                                                  (3.61) 

Pentru P()=0 se obţine cercul: 

                                                 ( )u v+ + =
1

2

1

4

2 2
                                                  (3.62) 

cu centrul în punctul de coordonate (-1/2,0) şi raza r = 1/2. 

Analog se determină pentru P() = 1,u = -1, pentru P() =2, cercul: 

                                                 ( )u v+ + =
3

2

1

4

2 2
                                                  (3.63) 

cu centrul în punctul de coordonate (-3/2, 0) şi raza r = 1/2. 

Pentru alte valori, intermediare celor prezentate, se obţin cercurile reprezentate în fig.3.14.  

În scopul ridicării caracteristicii reale de frecvenţă se intersectează grafic familia de cercuri  

P() = k, cu locul de transfer al funcţiei în circuit deschis.  

Astfel, se obţin perechile de puncte (,P()). 

Reprezentarea grafică a acestei dependenţe constituie caracteristica reală de frecvenţă, 

fig.3.15. 
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Fig.3.14 Intersecţia locului de transfer cu familia de cercuri P()=k 
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Fig.3.15 Caracteristica reală de frecvenţă 

 

În scopul determinării caracteristicii indiciale, se aproximează caracteristica reală de 

frecvenţă cu un trapez, determinându-se punctele Re(0), d, respectiv 0, şi apoi se aplică relaţia:                                                                                             

          e t si t si t si t
t t

t
d

d

d

d

d( ) Re( ){ ( ) [ ( ) ( )]
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− +
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
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10
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 
,     (3.64) 

unde funcţia si reprezintă funcţia sinus integral determinat cu relaţia: 

                                                 )(
)sin(

)(
0

td
t

t
tsi

t









=                                   (3.65) 

Pe baza caracteristicii indiciale se determină parametrii şi performanţele comportării 

dinamice. Dacă, caracteristica reală de frecvenţă nu poate fi aproximată printr-un singur trapez, 

atunci se face aproximarea prin mai multe trapeze, urmată de integrarea grafică, pe porţiuni. Se 

determină apoi, câte o funcţie indicială, e(t) pentru fiecare zonă trapezoidală şi apoi se compun 

funcţiile indiciale pe porţiuni. 

 

Analiza performanţelor cu ajutorul caracteristicilor Bode A() şi () 

Analiza comportării dinamice cu ajutorul caracteristicilor Bode A() şi (), se poate 

efectua în două moduri şi anume: 

a) analiza prin trasarea prin puncte a caracteristicii Bode, care cuprinde: -determinarea funcţiei de 

transfer a servosistemului; -trecerea funcţiei de transfer din planul Laplace în planul complex şi 

raţionalizarea acesteia; -trasarea prin puncte a caracteristicii; -determinarea pulsaţiei de frîngere a 

caracteristicii, a pulsaţiei de rezonanţă şi a pulsaţiei critice, urmată de stabilirea tipului de filtru şi a 

domeniului de frecvenţă;  -interpretarea alurii caracteristicii. 
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b) analiza prin trasarea rapidă (aproximativă) a caracteristicii Bode, care cuprinde: -determinarea 

funcţiei de transfer a servosistemului; -determinarea polilor şi zerourilor funcţiei de transfer; -

trasarea rapidă a caracteristicii Bode cu respectarea regulilor rapide de trasare; -determinarea 

pulsaţiilor de tăiere, prin analiza caracteristicii; -interpretarea rezultatelor, cu stabilirea căilor de 

optimizare a comportarii dinamice. 

După cum se observă, cele două metode diferă numai prin modul de trasare al 

caracteristicilor. 

Pentru înţelegerea modului de trasare al caracteristicilor Bode prin puncte, se prezintă în 

continuare trasarea caracteristicilor Bode pentru funcţia de transfer cu inerţie de ordinul unu (PT1).  

Expresia funcţiei de transfer este:   

H s
k

Ts
d( )=

+1
 

După trecerea funcţiei de transfer din planul Laplace în planul complex şi raţionalizarea 

expresiei acesteia, se obţine: 

H j
k

T
j

k T

T
j( )

( )

( )

( )
Re( ) Im( )






 =

+
−

+
= +

1 12 2         (3.66) 

unde: T este constanta de timp de întîrziere, k-factorul de amplificare, iar - pulsaţia curentă. 

Amplitudinea şi faza se vor determina cu relaţiile: 

A
k

T
( ) Re ( ) Im ( )

( )
  


= + =

+

2 2

21
                            (3.67) 

                                              ( ) ( )= −arctg T                                      (3.68) 

Caracteristicile trasate prin puncte, pot fi urmărite în figurile 3.16  şi 3.17. 
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Fig.3.16Caracteristica Bode A() pentru un sistem tip PT1 Fig.3.17 Caracteristica Bode () pentru un sistem tip PT1 
 

Caracteristica Bode A() este construită în coordonate dublu logaritmice. Calculul 

amplitudinii în dB se efectuează cu relaţia: 

                                                  A db A[ ] log= 20                                       (3.69)                     

Relaţia (3.69) provine din scrierea expresiei amplitudinii, exprimată în dB, pentru coordonate 

normate de putere, a răspunsului elementului sau sistemului: 

A db

F

z
F

z

F

F
[ ] log log= =10 2010

2

0

2 10

0

                               (3.70) 

unde: z este impedanţa mecanică, care se determină cu relaţia z=F/v [Ns/m], iar F-forţa în [N] a 

răspunsului. Caracteristicile Bode amplitudine-frecvenţă şi fază-frecvenţă, reflectă modul în care 

variază amplitudinea şi faza răspunsului elementului sau servosistemului, atunci cînd la intrare se 

aplică un semnal periodic cu frecvenţa cuprinsă într-un domeniu de interes. Dacă unui servosistem i 

se aplică la un anumit moment o mărime de intrare periodică în timp, de pulsaţie  şi dacă sistemul 
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este stabil, după o perioadă de adaptare la noua solicitare, îşi va găsi o nouă situaţie staţionară de 

funcţionare, care va fi de acelaşi tip, periodică şi cu aceeaşi pulsaţie . 

Trasarea rapidă a caracteristicilor Bode, presupune mai întâi determinarea polilor şi a 

zerourilor funcţiei de transfer a servosistemului  sau elementului analizat, urmată de trasarea rapidă 

a caracteristicii, cu respectarea regulilor de trasare. Regulile de trasare rapidă a caracteristicii Bode 

amplitudine-frecvenţă cuprind următoarele: -astatismul de ordinul unu introduce o pantă a 

caracteristicii de -20 dB/dec; astatismul de ordinul doi introduce o pantă a caracteristicii de -40 

dB/dec; -orice pol simplu introduce o pantă de -20 dB/dec; -orice pol dublu introduce o pantă de -40 

dB/dec; -orice zerou simplu introduce o pantă de +20 dB/dec; -orice zerou dublu introduce o pantă 

de +40 dB/dec; -panta caracteristicii se păstreaza pînă la următoarea pulsaţie de frîngere, care poate 

proveni dintr-un pol sau zerou. Funcţie de pulsaţia de frîngere întâlnită, caracteristica amplitudine-

frecvenţă îşi modifică panta, corespunzător regulilor prezentate. Pulsaţiile de frîngere a 

caracteristicii sunt constituite din polii sau zerourile reale, sau părţile reale ale polilor sau zerourilor 

complex-conjugate. În scopul înţelegerii modului de trasare rapidă a caracteristicii Bode 

amplitudine-frecvenţă, se consideră funcţia de transfer de ordinul doi în cele trei variante posibile, şi 

anume: -cînd răspunsul este supracritic,  >1, ecuaţia caracteristică are doi poli reali şi diferiţi 

fig.3.18; -cînd răspunsul este critic,  = 1 , ecuaţia caracteristică are doi poli reali şi egali, fig.3.19; -

cînd răspunsul este subcritic (oscilant)  < 1 , ecuaţia caracteristică are doi poli complexi-conjugati, 

iar funcţie de valoarea factorului de amortizare, comparată cu valoarea  0.6, caracteristicile Bode 

vor avea alurile ca în fig.3.20. 
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Fig.3.18 Caracteristica Bode A(f)   Fig.3.19 Caracteristica Bode A(f)       Fig.3.20 Caracteristica Bode A(f) 

     răspuns supracritic    răspuns critic                                     răspuns subcritic 

 

Funcţie de alura caracteristicii Bode, faţă de punctul de amplitudine -3 dB, punct de la care 

puterea răspunsului se diminueaza cu 60 %, elementele sau servosistemele vor funcţiona ca: -filtru 

trece jos FTJ (lasă să treacă răspunsul, care are o frcevenţă cuprinsă între 0 şi frecvenţa critică c); 
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Fig.3.21 Filtru trece jos (FTJ) 

 

-filtru trece sus FTS (lasă să treacă răspunsul, care are o frecvenţă cuprinsă între frecvenţa critică c 

şi marginea superioră a domeniului); 
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Fig.3.22 Filtru trece sus (FTS) 

 

-filtru trece bandă de bandă largă sau bandă îngustă FTB (BL sau BI) (lasă să treacă răspunsul, care 

are o frecvenţă cuprinsă între două frecvenţe critice, lărgimea benzii depinzând de poziţia polilor); 

    Fig.3.23 Filtru trece bandă de bandă largă şi de bandă îngustă (FTB(BL)), (FTB(BI))    

 

-filtru opreşte bandă de bandă largă sau bandă îngustă FOB (BL sau BI) (opreşte răspunsul, care 

are o frecvenţă cuprinsă între două frecvenţe critice) 
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Fig.3.24  Filtru opreşte bandă de bandă largă şi  de bandă îngustă (FOB(BL)), (FOB(BI)) 

 

-filtru trece bandă-opreşte bandă  de bandă largă sau bandă îngustă FTB-OB (BL sau BI) (lasă să 

treacă răspunsul care are o frecvenţă cuprinsă între primele două frecvenţe critice şi opreşte 

răspunsul care are o frecvenţă cuprinsă între alte două frecvenţe critice); 
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Fig.3.25 Filtru trece bandă de bandă largă şi opreşte bandă de bandă largă (FTB(BL)OB(BL))   

 

3.4.ANALIZA COMPORTĂRII DINAMICE ÎN SPAŢIUL STĂRILOR 

Spre deosebire de modelele funcţionale, reprezentarea servosistemelor în spaţiul stărilor 

presupune folosirea unui vector de stare cu ajutorul căruia se poate defini starea sistemului în orice 

moment. Starea unui servosistem reprezintă o cantitate de informaţie despre sistem, cu ajutorul 

căreia se poate stabili evoluţia sa viitoare, dacă se cunoaşte mărimea de intrare. 

Vectorul de stare aparţine spaţiului n dimensional, numărul componentelor depinzând de 

ordinul ecuaţiei diferenţiale a servosistemului analizat. De regulă, acest vector de stare se notează 

cu x şi are n componente x (x1,x2,x3,....xn). 

Analiza în spaţiul stărilor prezintă următoarele avantaje: -oferă informaţii privind evoluţia 

sistemului cînd se cunoaşte mărimea de intrare; -conduce la determinarea unei funcţii de transfer 

globale (pentru întreg servosistemul), utilizând modelarea multipolar-matricială; - asigură 

determinarea uşoară şi rapidă a oricărei mărimi de ieşire, cunoscând mărimile de intrare şi vectorul 

de stare; - asigură, pe baza modelului multipolar, o analiză rapidă a comportării dinamice, etc. 

Schema bloc în spaţiul stărilor poate fi urmărită în fig.3.26. 
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Fig.3.26 Reprezentarea generală în spaţiul starilor 

 

Ecuaţiile generale în spaţiul stărilor  sunt: 

                                                   ( )  ( )  ( ))()()( tuBtxAtx +=  -ecuaţia de stare                         (3.71) 

şi 

( )  ( )  ( ))()()( tuDtxCty +=  -ecuaţia de ieşire,                         (3.72) 

unde: (u(t))Rrx1 este vectorul mărimilor de intrare; -(x(t))Rnx1 –vectorul mărimilor de stare; 

(y(t))Rmx1- vectorul mărimilor de ieşire; - [A]Rnxn-matricea de stare a elementului sau sistemului; 

[B] ]Rnxr-matricea de comandă; -[C] ]Rmxn-matricea de observare; -[D]Rmxr-matricea de 

legătură directă. 

            O reprezentare a stării în spaţiul R[A,B,C,D], a unui sistem dinamic liniar, se poate obţine 

plecând de la schema de simulare a sistemului, compus din funcţii elementare de tip sumator, 

multiplicator cu o constantă, integrator, etc.  

            Se consideră o funcţie de transfer de tip PD2T3, ca fiind cea mai utilizată în modelarea 

comportării dinamice a elementelor şi sistemelor mecanice şi mecano- electrice de forma: 
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= .                                                   (3.73) 

            Pentru a se obţine forma canonică guvernabilă, funcţia de transfer se exprimă astfel: 
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unde: 
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            Din aceste două funcţii de transfer se deduc cele două ecuaţii diferenţiale, unde variabila z(t) 

este o variabilă intermediară de calcul: 

)()()( 01
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3 suasasassz =+++ . 

            După aplicarea transformatei inverse Laplace se obţine: 
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           Aceste ecuaţii conduc la schema de simulare din fig.3.27. 

 
Fig.3.27 Schema bloc de simulare -forma canonică guvernabilă 

         

            Considerând ieşirile din integratoare ca fiind componente ale vectorului de stare, se obţine 

următorul model matematic: 
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din care rezultă modelul în spaţiul stărilor: 
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            Modelul matriceal va fi de forma: 
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            Această reprezentare este forma canonică guvernabilă. 

           Pentru determinarea formei canonice observabile, funcţia de transfer se scrie sub forma: 
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 Mărimea de ieşire, y(s) se mai poate exprima astfel: 
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 După aplicarea transformatei inverse Laplace, se determină funcţia indicială, y(t): 

   −++−++−+=

t t t

dtdtdtyaubxyaubxyaubxty
0 0 0

001011202230 }])([{)( .       (3.79) 

 Ecuaţia conduce la o schemă de simulare ca în fig.3.28. 

Fig.3.28 Schema bloc de simulare -forma canonică observabilă 

 

 Ecuaţiile de stare, în acest caz sunt reprezentate de: 
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 Matriceal, modelul matematic în spaţiul stărilor are forma: 
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 Matricile componente sunt în acest caz: 
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 Această reprezentare este forma canonică observabilă. 

 În cazul în care sistemul are trei poli reali şi diferiţi p1, p2, p3, funcţia de transfer este de 

forma: 
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 Pentru condiţii iniţiale nule, se obţine schema de simulare din fig.3.29. 

Fig.3.29 Schema bloc de simulare – reprezentarea diagonală 

 

 Ecuaţiile de stare, în acest caz sunt: 
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 Sub formă matriceală, ecuaţiile din spaţiul stărilor, devin: 
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= , în care componentele de stare 

sunt: 
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 şi reprezintă forma 

diagonală a ecuaţiilor de stare. 

Un sistem mecanic care cuprinde o masă, un element elastic şi un amortizor, se poate 

reprezenta prin ecuaţia diferenţială generală de forma: 

                                   T T
d Y

dt
T T

dY

dt
Y kU1 2

2

2 1 2+ + + =( )                             (3.84) 

unde: Y este răspunsul servosistemului; U- mărimea de intrare; T1, T2- constantele de timp. 

Se defineşte vectorul de stare al servosistemului, vectorul de forma x(x1,x2): 
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După unele înlocuiri se obţine următorul model matematic: 
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Relaţia (3.86) se poate scrie matricial: 
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În caz general, după aplicarea transformatei Laplace şi înlocuirea matricei Y în prima relaţie 

(3.71), se obţine expresia funcţiei de transfer globale:                                     

   )()(][][)( 1

0

1 sDUsBUAsIcxAsIcsY TT +−+−= −−
        (3.88) 

 

iar funcţia de transfer pentru sistemul multivariabil are expresia:           (3.89) 

unde matricile cT
, A, B şi I au expresiile: 
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Cu ajutorul funcţiei de transfer globale H(s), relaţia (3.89), se vor putea interpreta 

performanţele comportării dinamice a întregului servosistem, precum şi între diversele componente. 
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