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ANALIZA SERVOSISTEMELOR

Analiza servosistemelor presupune determinarea modului cum diversii parametrii
constructivi-functionali influenteazd comportarea dinamica a servosistemelor, respectiv parametrii
caracteristici generalizati si performantele caracteristice.

Parametrii caracteristici generalizati si performantele caracteristice ale comportarii
dinamice, pot fi determinate prin metode grafo-analitice, prin analiza cu ajutorul caracteristicilor
indiciale sau a caracteristicilor de frecventa, sau analitic, cu ajutorul functiilor de transfer. Deci o
analizd completd a comportarii dinamice a servosistemelor utilizate in actionarea robotilor si
manipulatoarelor presupune: -analiza cu ajutorul caracteristicilor indiciale; -analiza cu ajutorul
functiilor de transfer; analiza cu ajutorul caracteristicilor de frecventa, etc.

3.1. ANALIZA CU AJUTORUL CARACTERISTICILOR INDICIALE

Analiza comportarii dinamice pe baza caracteristicilor indiciale presupune mai intai
determinarea analiticd a functiilor indiciale, pe baza schemelor bloc a servosistemelor supuse
analizei. Aceasta etapa este laborioasa datorita dificultatii aplicarii transformatei inverse Laplace
mirimii de iesire din cadrul servosistemului. In scopul aplicarii transformatei inverse Laplace este
necesara determinarea expresiei marimii de iesire e(s) sub forma unor sume de fractii simple, pentru
care existd formule ale transformatei inverse Laplace. Este necesard deci determinarea mai intai a
polilor si zerourilor functiei de transfer.

Polii functiei de transfer sunt radacinile ecuatiei caracteristice. Ecuatia caracteristica este
ecuatia determinatd de numitorul functiei de transfer si reprezinta raspunsul libel al elementului sau
sistemului. Zerourile functiei de transfer sunt radacinile ecuatiei zerourilor. Ecuatia zerourilor
este determinata de numaratorul functiei de transfer si reprezinta raspunsul fortat al elementului sau
sistemului studiat.

Coeficientii functiei de transfer, exprimata sub forma unei sume de fractii, se determina cu
ajutorul extinderii teoremei Heaviside.

Pentru cazul polilor singulari coeficientii se determina cu ajutorul relatiei:

C, =(s+ p)e(s)|s = —p, 3.1)

Pentru cazul polilor multipli de ordinul » se va utiliza relatia:
1 n—k

d ;
Cn,k = R— [(s+p;) e(S)]‘S =—Pp;
ds

k=1->n (3.2)

Determinarea functiei indiciale a functiei de transfer cu inertie de ordinul 1
Pe baza expresiei functiei de transfer cu inertie de ordinul 1, se determina expresia generala
a marimii de iesire e(s):

H(s)= k = &)
Ts+1 i(s)
k (3.3)
e(s)= I(s
5) Ts+1 ®)
Daca se considerd marimea de intrare, i(s) de tip treapta unitara, se obtine:
k.1 1
e(s)= ?[— ‘ —1]
5 os+—
T
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Daca se scrie expresia sub forma unei sume de fractii, se obtine:

k C C
efs)= [+ )
S os+—
T
Coeficientii se determind prin aplicarea extinderii teoremei Heaviside:
1 1
C, zs-g-— o =T
S+ —
T
1 1
Cp=(+-)—— | _ 1=-T
T s(s+ l) T
T

Dupa inlocuiri rezulta expresia functiei indiciale cu inertie de ordinul unu, de forma:

t
e(t)=k[l-e 7] (3.4)
unde: k este raspunsul forfat, iar e”" — raspunsul liber al elementului sau sistemului.
Pe baza aceleasi metodologii se determind expresia functiei indiciale si pentru sisteme de
ordinul 2 de forma:

-t/T

ey S
e(t) = 1—e*""[cos(@ 1) + ———=sin(,1)] (3.5)
Ny
sau
e(t) = L[1 —e " sin(w, t[1- &> +arctg 1;(52)] (3.6)
J1-&2 S

unde: k este factorul total de amplificare; &- factorul de amortizare; w.- pulsatia proprie.

Analiza pe baza caracteristicilor indiciale

Analiza parametrilor si a performantelor comportarii dinamice ale servosistemelor pe baza
caracteristicilor indiciale reprezintd de fapt analiza modului de variatie a marimii de iesire in functie
de timp. Caracteristicile indiciale pentru diverse marimi de intrare sunt prezentate in fig.3.1 a,b,c:

A
A. o
N4

W

a intrare de tip treaptd b intrare de tip rampd ¢ intrare de tip parabola

Fig3.1 Caracteristici indiciale pentru diverse marimi de intrare

In urma analizdrii caracteristicilor indiciale se pot trage urmitoarele concluzii asupra
parametrilor caracteristici generalizati:

-timpul de crestere (timpul dupa care marimea de iesire creste de la 0.1 la 0,9 din valoarea
stationard) si care exprima promptitudinea servosistemului studiat; se determind intersectand
orizontala corespunzatoare marimii de iesire stationard, cu caracteristica indiciala;

Pentru o functie de transfer cu inertie de ordinul 1 acesta rezulta analitic cu relatiile:
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t

t
pentru e®=0.1 0.1=1—-e7; e =09; 1n(0.9)=—%; {=0.1054-T

pentru e(1)=0.9 In(0.1) = —%; f, =23026-T

Timpul de crestere in acest caz va fi:
t,—t,=2.2T. (3.7
-timpul tranzitoriu # (timpul dupd care marimea de iesire are o valoare cuprinsa intre +5% si —
5% din valoarea stationard); se determind intersectdnd caracteristica indiciald cu domeniul
determinat de valoarea +5% si —5%, din valoarea marimii de iesire stationara;
Pentru o functie de ordinul 1 acesta se determina cu relatia:

e(t)=095=1-¢ "
t, =2.9957T, (3.8)
1ar pentru o functie de ordinul 2, cu relatia:

oL _o0s ,
J1=&2
—In(0.05\1- &%) 4.78
t, = ~ (3.9)
ga)n ga)n

-factorul total de amplificare & (factorul de amplificare al marimii de intrare); se determind cu
ajutorul modelului matematic, anuland toti termenii continand derivate;

-eroarea stationara & (eroarea marimii de iesire fatd de valoarea teoreticd); se determind cu
relatia:

e=kx, — x,(t,)| (3.10)

si exprima precizia servosistemului analizat;

-factorul de amortizare &£ (factorul care asigura rezolvarea compromisului optim precizie-
stabilitate); se determina cu relatiile:

F1-T g o I(El%]/100)
o, J7° +1n*(6]%]/100)

-suprareglajul o reprezintd abaterea maximd a marimii de iesire fatd de marimea de iesire
stationard. Relatia de calcul a suprareglajului rezulta ca diferentd intre valoarea maxima a marimii
de iesire si valoarea stationara. Pentru determinarea suprareglajului se determina mai intai constanta
de timp pentru care marimea de iesire este maxima. Aceasta se determind din conditia de anulare a
primei derivate a marimii de iesire:

de ) . . . . .
% =0, unde marimea de iesire pentru un sistem oscilant amortizat, are expresia
t

(3.11)

e(t) =1—e*""[cos(w,1) +

\/Lz sin(®, )] in care:
1-¢

@, =0,1- £* este pulsatia proprie (pulsatia cu amortizare). (3.12)
Rezulta in final:

sin(@,\[1- 1) = 0, sau @,/1- ¢ = nx, sau t = — =

o J1-&
In acest caz constanta maxima de timp se va exprima prin:
T

(=T (3.13)
o \J1-E

Suprareglajul se determina cu relatia:

27



t)— t
emax( a') eﬁnal(z) 10

ol%] = 0
eﬁna/ (tt)
unde:
&
(i) =1+e 1 ar e, (1) =1. (3.14)
In final se obtine relatia pentru determinarea suprareglajului, de forma:

b

o=e V¢ . (3.15)

-pulsatia naturald s, reprezintd modul in care marimea de iesire oscileaza, 1n perioada
tranzitorie, fara amortizare, si se determina cu relatia:

@D

0, == (3.16
J1-& )

servosistemele cu pulsatii naturale mari sunt foarte precise, foarte prompte, dar apropiate de limita
de stabilitate.
-pulsatia proprie @y reprezintd pulsatia cu care oscileaza marimea de iesire cu amortizare §i se

determina cu relatia:
nr.oscilatii >
a)p=27rt—,sau 0, =0,1-& (3.17)
t

-pulsatia de rezonanta @- reprezinta pulsatia la care amplitudinea raspunsului este maxima §i se
determind cu relatia aproximativa:
w, = 1-2& (3.18)

Analiza performantelor pe baza caracteristicilor indiciale
Analiza performantelor caracteristice ale unui servosistem presupune studiul: -preciziei;
-promptitudinii; stabilitatii; -capacitatii de urmarire.

Analiza preciziei servosistemelor cu ajutorul caracteristicilor indiciale presupune a se
determina eroarea stationara pentru intrare de tip treaptd, pentru diverse valori ale parametrilor
constructivi-functionali. Eroarea stationard se determind cu ajutorul relatiei (3.10), coeficientii
acesteia fiind determinati prin analiza caracteristicilor indiciale. Servosistemul va fi mai precis cu
cit eroarea stationara de pozitie (intrare de tip treaptd), va fi mai mica.

Stabilitatea unui servosistem presupune capacitatea servosistemului de a atenua
amplitudinea oscilatiilor raspunsului, dupd o periodd de timp, strict definitd ca fiind perioda
tranzitorie de functionare.

Un servosistem este mai stabil cu cit raspunsul se amortizeaza intr-o perioada tranzitorie mai
mica. Servosistemul va functiona instabil, dacd amplitudinea oscilatiilor in loc sa se atenueze, se
amplifici. In acest caz, perioada de functionare in regim oscilatoriu este nelimitati. Curba
infasuratoare a oscilatiilor raspunsului, pentru functionare instabila este e¢” (a >0), deci o functie
exponentiala divergentd. Trasand caracteristicile indiciale pentru diverse valori ale parametrilor
constructivi-functionali, se vor putea determina influentele acestora asupra functiondrii stabile a
servosistemului.

Analiza promptitudinii presupune a se determina viteza cu care un servosistem raspunde
unei marimi de intrare. Timpul de crestere este parametrul din cadrul caracteristicii indiciale care
oferd informatii privind promptitudinea servosistemului. Cu cit timpul de crestere va fi mai mic, cu
atit se poate aprecia cd servosistemul este mai rapid, dar mai apropiat de limita de stabilitate,
intrucat creste foarte mult suprareglajul, si deci implicit, numarul de oscilatii din perioada
tranzitorie.

Deseori insd nu intereseazd numai un anumit parametru sau performantd a comportarii
dinamice a servosistemului, ci un set de performante, de exemplu intereseaza ca servosistemul sa fie
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foarte prompt, precis si stabil. Dupa cum se observd unele din aceste performante se exclud
reciproc, deci chiar daca s-a determinat, din cadrul etapei de analizd, modul cum parametrii
constructivi-functionali influenteaza comportarea dinamica a servosistemelor, totusi va fi destul de
dificil sa se determine valoarea acestora in asa fel incat si fie obtinute performantele dorite. In
scopul determindrii optime a parametrilor constructivi-functionali care asigurd obtinerea
performantelor dinamice necesare, se va aplica metoda deciziei multiatribut. Aceastd metoda
asigura alegerea variantei optime, din mai multe variante posibile, varintd care sd fie cea mai
apropiata de functionarea optima din punct de vedere dinamic a servosistemului analizat.

3.2. ANALIZA SERVOSISTEMELOR CU AJUTORUL FUNCTIILOR DE
TRANSFER
Functia de transfer a unui element sau servosistem este reprezentata prin raportul dintre
transformata Laplace a raspunsului si transformata Laplace a semnalului. Expresia generala a unei
functii de transfer in circuit deschis este de forma:
1 b,s" +.+bs+b,

H,(s)=— —"— (3.19)
a,s" +..+as+a,

sau
H,(s) = La Pn )
P’ (s)
unde: m este gradul polinomului de la numaratorul functiei de transfer si reprezintd numarul
zerourilor cu efect anticipativ, polinomul reprezentand componenta fortata a raspunsului; n- gradul
polinomului de la numitorul functiei de transfer si reprezintd numarul polilor cu efect inertial,
polinomul reprezentand componenta libera a raspunsului; o- ordinul de astatism si determind
numarul polilor in origine.

Prin statism se intelege ca raspunsul elementului sau sistemului, pentru o anumitd marime
de intrare, are eroare stationara, care pentru intrare de tip treapta se numeste eroare de pozitie,
pentru intrare de tip rampa se numeste eroare de viteza, iar pentru intrare de tip parabold se
numeste eroare de acceleratie. Prin astatism de ordinul unu se intelege ca elementul sau sistemul
respectiv nu are eroare de pozitie (pentru intrare de tip treaptd), iar pentru cele cu astatism de
ordinul doi, nu are eroare de viteza (pentru intrare de tip rampa), respectiv pentru cele cu
astatism de ordinul trei, nu are eroare de acceleratie (pentru intrare de tip parabola).

(3.20)

Analiza comportarii dinamice cu ajutorul functiilor de transfer

Analiza comportarii dinamice cu ajutorul functiilor de transfer presupune determinarea
functiilor de transfer in circuit deschis si inchis urmatd de determinarea parametrilor si a
performantelor, pe baza
expresiei functiilor de transfer determinate.

Determinarea parametrilor caracteristici generalizati pe baza expresiei functiilor de
transfer presupune: -determinarea factorului de amplificare in circuit deschis, prin calculul limitei
functiei de transfer in circuit deschis:

k,=limH (s) (3.21)

s—0
-determinarea factorului de amplificare in circuit inchis, prin calculul limitei functiei de transfer in
circuit Inchis:

k, = linng.(s) (3.22)
-determinarea factorului total de amplificare:
k
kp=—* 3.23
e (3.23)

-determinarea constantei totale de timp:
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. H(s 1
T= hmL =— (3.24)
0 Hy(s)  ky
Daca functia de transfer este o functie de tip proportionald cu inertie de ordinul doi (cea mai
intdlnita in analiza elementelor si sistemelor) de forma:

k
H,(s)=— (3.25)
a,s” +a,s+a,
se pot defini §i urmatorii parametrii caracteristici generalizati:
-pulsatia naturala:
)
o = |- (3.26)
a,
-pulsatia proprie:
w, = (3.27)
-pulsatia de rezonanta:
(3.28)

unde x=1.91 pentru £=0.3; x=1.94 pentru £=0.4; x=1.95 pentru £=0.5; x=1.98 pentru £=0.6;
x=2.0004 pentru £=0.7.
-pulsatia critica este pulsatia oscilatiei raspunsului de la care amplitudinea scade cu 3dB/decada;
4.78
-timpul tranzitoriu: t,R——————— (3.29)
[ T )
2\a,a, \ a,
-suprareglajul-reprezinta abaterea maxima a oscilatiei raspunsului fata de valoarea stationara si are
expresia :

a
! T

2 Jasea

L

og=e | f0® (3.30)

Schemele bloc utilizate frecvent in cadrul modelarii servosistemelor sunt constituite din
elemente de tip dipolar, mult mai usor de folosit. Insd, aceste elemente ofera informatii trunchiate
datorita aproximarilor introduse. Elementele de tip dipol sunt caracterizate de o marime de intrare si
de o marime de iesire, comparativ cu elementele de tip multipolar, mult mai apropiate de
comportarea reald, care au mai multe marimi de intrare $i mai multe marimi de iesire. in fig.3.2 este

reprezentat un element de dip dipolar, iar in fig.3.3 este reprezentat un element de tip multipolar.

' 1

- >
F

!

Fig.3.2 Schema unui element de tip dipol Fig.3.3 Schema unui element de tip sexapol

> >

Elementele de tip multipolar asigura analiza completd a comportarii dinamice, prin
considerarea atat a canalului de transmiterea informatiei de miscare, cat si pe cea a canalului de
transmiterea informatiei de efort. In acest mod se poate pune in evidenta foarte usor interdependenta
dintre intrarile si iesirile pe fiecare din cele doud canale informationale, cat si interdependenta intre
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cele doua canale informationale. Intrucat modelarea cu ajutorul elementelor multipolare utilizeaza
calculul matricial pentru determinarea functiilor de transfer, modelarea este mult mai greoaie fara
utilizarea programelor specializate de calcul, motiv pentru care, cu unele aproximdri, se poate
utiliza modelul de tip dipolar.

In cazul modelarii sexapolare, expresia functiei de transfer este:

€
e
(e(s)) ez Hll H12 H13
Hd(s):m:__3: H, H, H, (3.31)
s l
.1 H3l H32 H33
I
i3

iar mdrimea de iesire exprimatd matriceal:
G H, H, Hy| (i Hy\iy + H,l, + H5i;
e |=|Hy Hy Hy || b |=| Hyl+ Hyly + Hyly (3.32)
e3 H31 H32 H33 i3 HSlil + H32i2 + H33i3
Pentru un element sau sistem, modelat cu elemente de tip multipolar, expresia generala a
marimii de iesire este:

e\ [H, H, H,, i Hyjiy+...+H i +..+H,i,
e |=|H, .. H, .. H, i |=|Hj+.+Hji+.+H,, (3.33)
en _Hnl Hﬂj Hnm_ lm Hnlil ++Hn/l/ +"'+Hnmim
iar functia de transfer H;; se determina cu relatia:
e;(s)
H;(s)=—"—"-—.
i,(s)
In fig.3.4 este evidentiat un sistem cu trei functii de transfer de tip dipol si o reactie externa.
£
—P> >
-

Fig.3.4 Schema bloc a unui sistem cu legétura de reactie externa

H; este functia de transfer a corectiei si regulatorului; H> - functia de transfer a elementului de
executie si a organului mobil; H; -functia de transfer a traductorului; i - marimea de intrare; e —
marimea de iesire; 7- marimea de reactie; ¢ - eroarea.
Functia de transfer in circuit inchis este definita ca fiind raportul dintre transformata Laplace
a marimii de iesire §i transformata Laplace a marimii de intrare. Functia de transfer are expresia:
H(S):L[e(t)]: H H, 334
l Lli(t)] 1+HH,H, (3:34)
Functia de transfer in circuit deschis este raportul dintre transformata Laplace a reactiei si
transformata Laplace a erorii. Functia de transfer are expresia:

H(s)=M:HHH
d L[S(t)] 1752553
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In acest caz functia de transfer in circuit inchis se mai poate exprima:
HH
]_Ii (s)= il b’
1+ H,

In caz general, pentru un sistem cu mai multe bucle de reactie, functia de transfer in circuit
inchis este:

(3.36)

_ H,, (s)
1+H ,(s)+H.,(s)+...+ H

rn(s)

H,(s) (3.37)
unde: Huir(s) este functia de transfer in circuit direct intre intrare si iesire; Hi(s)- functia de transfer
a buclei de reactie r;, cea mai interioard; H(s)- functia de transfer a buclei de reatie externa.

Determinarea performantelor servosistemelor cu ajutorul functiilor de transfer
presupune determinarea: preciziei, promptitudinii, stabilitatii si capacitatii de urmarire.

Determinarea preciziei servosistemelor cu ajutorul functiilor de transfer presupune
calculul erorii stationare. In acest scop se va determina expresia erorii stationare functie de marimea
de intrare. Pe baza schemei bloc din fig.3.4 se scrie:

é?(;g) = i-i;—};;;rzg;; ‘1

Intrucat intereseaza eroarea stationara in domeniul real, se aplica teorema valorii finale
functiei care exprima eroarea, deci se scrie:

(s) (3.38)

g, =limeg(t) =lims-&(s)=lims- _r i(s) (3.39)
: t—>o s—0 50

1+ H,(s)

Calculul erorii stationare de pozitie pentru un sistem cu astatism de ordinul zero
Intrucat se studiaza eroarea stationara de pozitie, marimea de intrare este de tip treapta.
In acest caz relatia (3.39) se scrie:

g —lims-;-l— 1 _ !
Toss0 1+ H(s) s 1+lin01Hd(S) 1+k,

Eroarea stationara de pozitie in acest caz (a servosistemelor cu astatism de ordinul zero) este
minimd in cazul in care factorul de amplificare in circuit deschis este maxim, deci si k1, k2, k3,
factorii de amplificare ai fiecarei functii de transfer, sunt maximi.

(3.40)

Calculul erorii stationare de pozitie pentru un sistem cu astatism de ordinul unu
Functia de transfer in circuit deschis, in cazul in care sistemul are astatism de ordinul unu
are expresia:

1 b,s" +..+bs+Db,

H,(s)=—- 3.41
‘ s as"+.+as+a, (3-41)

Eroarea stationara in acest caz va fi:

&y =lims- ! l—)0 (3 42)
50 1+1.bmsm +.4+b, s '

n
s a,s" +..+a,

Sintetic, eroarea pentru diverse ordine de astatism si pentru diverse intrari, este prezentata in
tabelul 3.1.

Tabelul 3.1
Nr.crt. Sistem cu statism | Sistem cu astatism | Sistem cu astatism | Sistem cu astatism
de ordinul 1 de ordinul 2 de ordinul 3
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FEroare de 1
pozitie 1+k, 0 0 0
Eroare de 1
viteza © . 0 0
d
Eroare de 0 0 1 0
acceleratie E

Determinarea promptitudinii servosistemelor cu ajutorul functiilor de transfer, se
efectueaza prin determinarea constantei de timp. Se va aprecia ca un servosistem este mai prompt
cu cit constanta de timp este mai micad. Constanta de timp este minima daca factorul de amplificare
este maxim. Cu cit creste factorul de amplificare, servosistemul va fi mai prompt, mai precis, dar
mai apropiat de limita de stabilitate.

Determinarea stabilitatii servosistemelor cu ajutorul functiilor de transfer, constd in
aplicarea criteriului algebric de stabilitate, Routh- Hurwitz.

Conditia necesara si suficientd pentru ca un sistem sa fie stabil este ca toti polii functiei de
transfer Ha(s), sa fie situati in semiplanul sting al planului complex. Celelalte criterii de stabilitate
au fost amintite n cadrul celorlaltor moduri de analiza a servosistemelor.

Studiul cu ajutorul metodei locului radacinilor

Locul radacinilor reprezinta locul geometric al radacinilor ecuatiei caracteristice (ecuatia
polilor) si a ecuatiei zerourilor, atunci cind coeficientii acestor ecuatii sunt parametrizati functie de
un anumit parametru a carui valoare va fi modificat intre anumite limite. Aceste limite sunt stabilite
functie de domeniul de interes specificat in tema de proiectare, valori care pot fi obtinute fizic. Cu
ajutorul metodei locului radacinilor se poate determina, tindnd cont de semnificatia elementelor
legate de pozitia polilor §i a zerourilor in planul poli-zerouri, valoarea maxima a factorului de
amplificare sau a oricarui alt factor constructiv-functional, care sa rezolve compromisul optim
precizie-stabilitate.

Cu cit servosistemul va fi mai precis, va fi mai prompt, dar mai apropiat de limita de
stabilitate, iar locul radacinilor mai apropiat de axa imaginara.

Metoda locului radacinilor, constd in determinarea locului geometric al polilor si zerourilor
functiei de transfer a servosistemului, atunci cind toti polii si zerourile sunt exprimate functie de un
acelasi parametru constructiv-functional, iar acestuia 1 se impune o variatie intre limitele de interes
stabilite prin tema de proiectare.

In aplicatiile care urmeazi, rezolvate cu ajutorul unor programe realizate in MathCad,
LabView, pentru cazuri concrete, se poate constata modul cum este influnfatd comportarea
dinamica a elementului de executie, de anumiti parametrii constructiv- functionali.

Cu ajutorul acestei metode se va putea optimiza comportarea dinamica si stabili valoarea
parametrilor constructivi-functionali in asa fel incat functionarea sa fie optima.

Domeniul de variatie al parametrilor constructivi-functionali se stabileste functie de aplicatia
in care se implementeazd servosistemul, de conditia de realizare fizicd a servosistemului, de
componentele constructiv-functionale ale servosistemului, de domeniul de lucru, etc.

Prin studiul asistat al locului radacinilor, Tmpreuna cu caracteristicile Bode si locul de
transfer Nyquist, se va putea determina compromisul optim precizie-stabilitate, functie de aplicatia
robotului in cadrul celulei de fabricatie flexibila.

Se considera un sistem, care poate fi aproximat printr-o functie de transfer de tip (PT3),
proportionala cu inertie de ordinul 3, de forma:

H(s)= k

(Ts+1D)(T,s" + s +1)
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unde: 7772 sunt constantele inertiale, iar k este factorul de amplificare. Functia de transfer are un pol
real si doi poli complex conjugati. Existenta polilor complex-conjugati determind oscilatia marimii
de iesire. Se considerd cazul cel mai defavorabil si anume ca frecventa, la care apare oscilatia
raspunsului sistemului, este joasa. Daca acesti coeficienti, determinati dupa aplicarea transformatei
Laplace, modelului matematic determinat pentru functionarea in regim dinamic a sistemului, pot fi
exprimati In functie de un parametru variabil p, a carui influentd asupra comportarii dinamice a
sistemului se doreste a fi cercetatd, functia de transfer poate fi exprimata astfel:

H(s)= k 5
[7,(p);s +11-[T,, (p)s™ + T, (p)s +1]

Dupa trasarea asistatd a locului radacinilor ecuatiei polilor si a zerourilor pentru cazul in
care parametrul p variaza in domeniul pmin $1 pmax, s€ va obtine un numar de curbe egal cu numarul
polilor reali si a celor complex-conjugati. Se considera alura locului rddacinilor ca fiind cea din
fig.3.5.

Punctele P; si P2, determinate de intersectia dintre ramurile locului radacinilor
corespunzator polilor complex-conjugati, cu razele vectoare trasate pentru valorile unghiulare de
+539...-53% (corespunzitoare unui factor de amortizare, &=0.6), exprimd limita de precizie-
stabilitate, sistemul este precis, prompt si stabil. In afara aceastei limite unghiulare, sistemul este
mai precis, dar functionarea este mai apropiata de limita de stabilitate absoluta, domeniu determinat
de axa imaginard a planului complex.

Punctele P; si P4, determinate de intersectia ramurilor locului
radacinilor complex-conjugate cu axa imaginara, exprima limita maxima
de stabilitate. Pentru acestd pozitie a polilor, sistemul lucreaza foarte
precis, foarte rapid, dar vulnerabil la orice factor perturbator care poate
provoca instabilitate. Limita determinata de razele vectoare trasate pentru f
+37° si
—37° (limitd determinatid de un factor de amortizare, £=0.8) este limita
inferioara de precizie- stabilitate, sistemul fiind mai lent, cu o precizie mai
slabd, o promptitudine mai micd, dar mai stabil. In afara acestei limite,
deci catre pozitii unghiulare mai mici, elementul sau sistemul este foarte
lent, lucreaza foarte amortizat. Totodatd, cu ajutorul locului radacinilor se
va putea stabili, domeniul de variatie al frecventei proprii, al frecventei de Fig.3.5 Locul radacinilor
taiere, al frecventei naturale, acestea fiind exprimate de ordonata, abscisa, pentru o functie de tip PT3
respectiv raza vectoare al fiecarui punct al locului radacinilor. Totodata se
va putea stabili si domeniul de variatie al factorului de amortizare exprimat de cosinusul unghiului
dintre raza vectoare si fiecare punct al locului radacinilor. Prin cunoasterea frecventei proprii si
maximizarea acesteia, se va putea obtine o marire a domeniului de frecventd in care poate lucra
sistemul si deci o mdrire a preciziei §i a promptitudinii acestuia.

Y

3.3. ANALIZA CU AJUTORUL CARACTERISTICILOR DE FRECVENTA

In tehnica analizei si sintezei servosistemelor unele performante ale comportarii dinamice nu
pot fi determinate decit prin analiza caracteristicilor de frecventa. Aceste caracteristici aratd modul
cum variaza amplitudinea si faza raspunsului cu frecventa. Cu ajutorul acestor caracteristici, se pot
determina marja de stabilitate si precizie, capacitatea de urmarire, promptitudinea, etc.

Analiza cu ajutorul locului de transfer (caracteristica Nyquist)

Locul de transfer sau caracteristica Nyquist este construitd pentru functia de transfer in
circuit deschis Ha(s) pentru un anumit domeniu de variatie al pulsatiei sau frecventei si este
reprezentatd de variatia amplitudinii (a modulului functiei de transfer in circuit deschis) cu
frecventa. Caracteristica mai este cunoscuta si sub denumirea de caracteristica amplitudine-faza 4(¢
), sau hodograful functiei de transfer. Caracteristica este construitd in coordonate polare, raza fiind
determinatd de amplitudine, iar unghiul, de faza.
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Amplitudinea si faza se determina cu relatiile:
A(@)= R (w)+Im*(w) = |H ()|

H (w)= Re(w)+j Im(w)= A(w)e’”” (3.43)
_ Im(w)
(W)= —arctg Re(w)

Caracteristica Nyquist pentru o functie de transfer cu inertie de ordinul doi este reprezentatd

in fig.3.6.
A

Fig.3.6 Caracteristica Nyquist pentru o functie de transfer de ordinul 2

Amplitudinea maximd reprezintd amplitudinea la pulsatia de rezonantd, iar faza
corespunzatoare acestei pulsatii reprezinta faza la rezonanta.

Pulsatia de rezonantd se poate determina si prin compararea distantei dintre punctele
invecinate ale caracteristicii. Astfel, in cazul in care distanta dintre doua puncte invecinate de pe
locul de transfer este maxima, acel punct reprezinta punctul in care amplitudinea este maxima, deci
punctul frecventei de rezonanta.

Servosistemele mecanice au bucla de amplitudine maxima deplasata catre dreapta, deci catre
frecvente mai joase (frecvente de rezonanta mai joase), comparativ cu servosistemele electro-hidro-

mecanice, fig.3.7.

A A

Y

a mecanice b electro-hidro- mecanice

Fig.3.7 Caracteristicile Nyquist pentru diverse sisteme

Desenarea rapida a locului de transfer, presupune determinarea coeficientilor o si 6
cunoscandu-se expresia functiei de transfer in circuit deschis Ha(s).
Daca scriem functia de transfer in circuit deschis Hu(s) sub forma:

1 P'(s
H(s)=— L)
s“ P'(s)
@ fiind:
O=a+n—-m (3.44)

unde: « este ordinul de astatism; n- numarul polilor; m- numarul zerourilor. Functie de valoarea lui
a si 6, locul de transfer va tinde asimptotic catre axele de coordonate ca in fig.3.8.
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A

Fig.3.8 Schema de trasare rapida a caracteristicilor Nyquist

In cazul unui sistem mecanic general fig.3.9, modelul matematic este:

dx? dx
“+h—+kx,=F
" dt? dt ¢ (345)

v

Fig.3.9 Schema bloc a unui sistem mecanic

unde: m este masa elementului; x.- deplasarea elementului consideratd ca marime de iesire; A-
factorul de amortizare viscoasa; k- constanta elastica a arcului; Fux- forta excitatoare considerata ca
marime de intrare.

In acest caz, functia de transfer in circuit deschis va avea expresia:

H (s)= x,(s) _ 1 1/k k

— N

2 - h 2
F(s) ms +hs+k ’Zsz—l—s+l Sz+2fs+l

@
k h 2
0, = |—l=——;0,=0,1—-x
" \/;f 2Jmk " g

n n
unde: @n- pulsatia naturald a sistemului vibrator; @~ pulsatia de rezonanta; x - factor care poate
avea urmatoarele valori, functie de factorul de amortizare &, 1.9...2.0004. [20]

Functie de factorul de amortizare, locul de transfer va avea alurile ca in fig.3.10.
A

(3.46)
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Fig.3.10 Caracteristicile Nyquist trasate pentru diverse valori ale factorului de amortizare & < & < &

Intre modelele mecanice, electrice si fluidice existd urmatoarea analogie [3]:
-ecuatia generald pentru modelul electric este:

di 1
U=Ri+L—+—] idt (3.47)
dt C
-ecuatia generald pentru modelul hidraulic este:
d0 E
P=R,0+L —+—I Qdt 3.48
h Ty (3.48)
-ecuatia generala pentru modelul mecanic este :
dx d’x
F=h—+m + kx 3.49
dt dt’ (3.49)

unde: U este tensiunea de alimentare a circuitului electric [V];R- rezistenta circuitului [Q]; i-
intensitatea curentului electric [A]; C- capacitatea circuitului [F]; L- inductanta circuitului [H]; p-
presiunea circuitului hidraulic [N/m?]; Ri- rezistenta circuitului hidraulic [Ns/m®]; O- debitul din
circuitul hidraulic [m3/s]; Ls- inertanta circuitului hidraulic [Ns?/m’]; E- modulul de elasticitate al
uleiului [N/m?]; V-volumul comprimat de fluid [m?®]; F- forta de excitatie [N]; A- coeficientul de
frecare viscoasa [Ns/m]; x- deplasarea elementului mobil [m]; m- masa elementului mobil [Ns?/m];
k- constanta elastica a arcului [N/m].
Astfel, elementele disipative de natura electrica, hidraulicda, mecanica sunt determinate de:
I° (O dx/dt
elementele acumulatoare de energie cinetica de natura electrica, hidraulica, mecanica
sunt determinate de:

(3.50)

dilde”" " dgia’ " dPxldr’

elementele acumulatoare de energie potentiala de natura electrica, hidraulica, mecanica
sunt determinate de:

(3.51)

j idt J' Odt L F

U ' E P . (3.52)

Determinarea preciziei unui servosistem cu ajutorul caracteristicii Nyquist se realizeaza

prin determinarea grafici a erorii stationare. In prealabil, se determin, analitic sau prin analiza

caracteristicii indiciale, timpul tranzitoriu, apoi pulsatia corespunzatoare acestei constante de timp,
folosind relatia:

0=— (3.53)
Se localizeaza pe locul de transfer, punctul a cdrui pulsatie este cea anterior determinata si se

traseaza un cerc cu raza egala cu amplitudinea corespunzatoare pulsatiei la timpul tranzitoriu. Prin
insumare grafica, se determina eroarea stationara cu relatia:

|k, _‘Hd(ia)zt)H (3.54)

unde: x; este marimea de intrare; k- factorul de amplificare; e~ pulsatia la timpul tranzitoriu,
fig.3.11.

gst = xi
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Fig.3.11 Determinarea grafo-analitica a erorii stationare cu ajutorul caracteristicii Nyquist

Studiul stabilitatii cu ajutorul caracteristicii Nyquist consta in verificarea criteriilor de
stabilitate Nyquist. Criteriul de stabilitate generald Nyquist aratd ca, dacd functia de transfer in
circuit deschis are un numar de poli reali pozitivi, servosistemul este stabil, daca locul de transfer
ocoleste prin dreapta in sens antiorar, punctul de coordonate (-1,0) de un numar de ori egal cu
numarul polilor reali pozitivi. Criteriul de stabilitate Nyquist aratd ca un servosistem cu poli reali
negativi sau poli complex-conjugati, cu partea reald negativa, este stabil daca, locul functiei de
transfer 1n circuit deschis, ocoleste prin dreapta, punctul de coordonate (-1,0). Aceasta isi gaseste
justificarea in faptul ca, prin trecerea locului de transfer prin punctul (-1,0), eroarea stationara
devine infinita si deci servosistemul devine instabil.

Marja de stabilitate si precizie se determina prin aflarea marginii de faza si a marginii de
cistig. Marginea de faza si marginea de cistig pot fi urmarite in fig. 3.12 si se determina cu relatiile:

M,=180"-D, . (3.55)

M, =1-|H(j,)

A

i -
4w w

\
Y

a sistem proportional cu inertie de ordinul 2 b sistem proportional cu inertie de ordinul 3
Fig.3.12 Marginea de cistig si marginea de faza pentru diverse sisteme

Marginea de faza se defineste ca fiind pozitia unghiulard a razei vectoare, care trece prin
punctul de intersectie al locului de transfer, cu cercul cu raza egala cu unitatea, fatd de semiaxa
reald negativa.

Marginea de cistig este determinata de diferenta dintre amplitudinea unitara si amplitudinea
locului de transfer, la pulsatia corespunzatoare fazei de 180.

In scopul rezolvirii compromisului optim precizie-stabilitate, marginea de fazi trebuie si fie
cuprinsa intre:

25° < M, < 45" (3.56)
iar marginea de cistig:
0.2<Mc<0.3 (3.57)

Un servosistem este mai precis §i mai prompt cu cit marginea de fazd se aproprie de
marginea superioard (M,=45%), iar marginea de cistig se apropie de limita inferioard (M= 0.2), dar
in acest caz, comportarea servosistemului este mai apropiata de limita de stabilitate, iar raspunsul se
atenueaza dupa o perioada mai lungd de timp. Un servosistem este mai stabil cu cit marginea de
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cistig este mai apropiata de valoarea 0.3, iar marginea de faza de limita inferioard. In acest caz
servosistemul este mai lent $i mai putin precis, iar oscilatiile raspunsului se atenueazd mult mai
repede.

Analiza performantelor cu ajutorul caracteristicii reale de frecventa

Caracteristica reala de frecventd reprezintd variatia partii reale a functiei de transfer in
circuit Inchis, functie de frecventd. Daca se considerda un servosistem cu reactie unitara de forma
celui din figura 3.13.

\j

Fig. 3.13 Schema bloc sistem cu reactie unitara

functia de transfer in circuit inchis va avea expresia:
H (s
H(s)= M) (3.58)
1+ H ,(s)
Daca se tine cont de imaginea 1n planul complex a functiei de transfer in circuit deschis de

forma:

H ,(s)=u(w)+ jv(w) (3.59)
dupa inlocuirea in expresia (3.58) si rationalizarea acesteia, se obtine:

2 2

utu +v %
H(jw)= + = P(o)+j0(w
VO e T (O
Plo)= u( )+’ (w)+v’ (o)

(1+ u(w)*+*(w)
unde P(w) este partea reala a functiei de transfer in circuit inchis a servosistemului analizat. P(®) =
k reprezinta o familie de cercuri tangente la dreapta u = -1.

Ecuatia generald a cercului cu centrul in punctul de coordonate (a,b), functie de sistemul
axelor de coordonate u si v, este:

(3.60)

(u—a)’+(v-b)’=r’ (3.61)
Pentru P(w)=0 se obtine cercul:
1 1
() =5 (3.62)

cu centrul in punctul de coordonate (-1/2,0) siraza r = 1/2.

Analog se determina pentru P(w) = 1,u = -1, pentru P(®w) =2, cercul:

3, 5, 1
(u+ 2) +v° = 1 (3.63)

cu centrul in punctul de coordonate (-3/2, 0) siraza r = 1/2.

Pentru alte valori, intermediare celor prezentate, se obtin cercurile reprezentate in fig.3.14.

In scopul ridicarii caracteristicii reale de frecventa se intersecteaza grafic familia de cercuri
P(w) =k, cu locul de transfer al functiei in circuit deschis.

Astfel, se obtin perechile de puncte (o, P(w)).

Reprezentarea graficd a acestei dependente constituie caracteristica reald de frecventa,
fig.3.15.
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Fig.3.14 Intersectia locului de transfer cu familia de cercuri P(w)=k

T——

Fig.3.15 Caracteristica reala de frecventa

In scopul determinarii caracteristicii indiciale, se aproximeazd caracteristica reala de
frecventa cu un trapez, determinandu-se punctele Re(0), wa, respectiv aw, $1 apoi se aplica relatia:

e(t)=2 ~Re(0) {0ty — 22— [si(,f)-si( 0 1)+ L cos(@i=cos(@,d), 3 ¢4
0~ Wy wy, — @, t
unde functia si reprezinta functia sinus integral determinat cu relatia:
sion = Sm(“” I 4 or) (3.65)

Pe baza caracteristicii indiciale se determma parametrii si performantele comportarii
dinamice. Daca, caracteristica reald de frecventd nu poate fi aproximata printr-un singur trapez,
atunci se face aproximarea prin mai multe trapeze, urmatd de integrarea grafica, pe portiuni. Se
determind apoi, cate o functie indiciala, e(z) pentru fiecare zona trapezoidala si apoi se compun
functiile indiciale pe portiuni.

Analiza performantelor cu ajutorul caracteristicilor Bode A(w) si p(@w)

Analiza comportarii dinamice cu ajutorul caracteristicilor Bode A(w) si ¢(w), se poate
efectua in doua moduri si anume:
a) analiza prin trasarea prin puncte a caracteristicii Bode, care cuprinde: -determinarea functiei de
transfer a servosistemului; -trecerea functiei de transfer din planul Laplace in planul complex si
rationalizarea acesteia; -trasarea prin puncte a caracteristicii; -determinarea pulsatiei de fringere a
caracteristicii, a pulsatiei de rezonanta si a pulsatiei critice, urmata de stabilirea tipului de filtru si a
domeniului de frecventa; -interpretarea alurii caracteristicii.
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b) analiza prin trasarea rapida (aproximativa) a caracteristicii Bode, care cuprinde: -determinarea
functiei de transfer a servosistemului; -determinarea polilor si zerourilor functiei de transfer; -
trasarea rapidd a caracteristicii Bode cu respectarea regulilor rapide de trasare; -determinarea
pulsatiilor de tdiere, prin analiza caracteristicii; -interpretarea rezultatelor, cu stabilirea cailor de
optimizare a comportarii dinamice.

Dupa cum se observd, cele doud metode difera numai prin modul de trasare al
caracteristicilor.

Pentru intelegerea modului de trasare al caracteristicilor Bode prin puncte, se prezinta in
continuare trasarea caracteristicilor Bode pentru functia de transfer cu inertie de ordinul unu (PT1).

Expresia functiei de transfer este:

k
Ts +1

Dupa trecerea functiei de transfer din planul Laplace in planul complex si rationalizarea
expresiei acesteia, se obfine:

H,(s)=

k k(T w)
H(jw)= -J = Re(w)+jIm(w 3.66
GO T TaTey = Re(@H/ (@ (3:66)
unde: T este constanta de timp de intirziere, k-factorul de amplificare, iar - pulsatia curenta.
Amplitudinea si faza se vor determina cu relatiile:

k
A(w)= |Re*(o)+Im*(0) = ———— 3.67
(@)= Y Re*(a)+ Im’(e) o (3.67)
A w)= —arcty T w) (3.68)

Caracteristicile trasate prin puncte, pot fi urmarite in figurile 3.16 si 3.17.

¥

™\

~\\\ w\\.. |

] \

Fig.3.16Caracteristica Bode A(w) pentru un sistem tip PT; Fig.3.17 Caracteristica Bode @(w@) pentru un sistem tip PT,

Caracteristica Bode A(w) este construita in coordonate dublu logaritmice. Calculul
amplitudinii In dB se efectueaza cu relatia:
Aldb]=20log 4 (3.69)
Relatia (3.69) provine din scrierea expresiei amplitudinii, exprimatd in dB, pentru coordonate
normate de putere, a raspunsului elementului sau sistemului:

F2
e F
A[db]=10log,, E =20log,, Fo (3.70)
z

unde: z este impedanta mecanicd, care se determind cu relatia z=F/v [Ns/m], iar F-forta in [N] a
raspunsului. Caracteristicile Bode amplitudine-frecventd si faza-frecventa, reflectd modul in care
variaza amplitudinea si faza raspunsului elementului sau servosistemului, atunci cind la intrare se
aplicd un semnal periodic cu frecventa cuprinsa intr-un domeniu de interes. Daca unui servosistem i
se aplica la un anumit moment o marime de intrare periodica in timp, de pulsatie o si daca sistemul

41



este stabil, dupa o perioada de adaptare la noua solicitare, 131 va gasi o noua situatie stationara de
functionare, care va fi de acelasi tip, periodica si cu aceeasi pulsatie ®.

Trasarea rapidd a caracteristicilor Bode, presupune mai intdi determinarea polilor si a
zerourilor functiei de transfer a servosistemului sau elementului analizat, urmata de trasarea rapida
a caracteristicii, cu respectarea regulilor de trasare. Regulile de trasare rapida a caracteristicii Bode
amplitudine-frecventd cuprind urmatoarele: -astatismul de ordinul unu introduce o panta a
caracteristicii de -20 dB/dec; astatismul de ordinul doi introduce o panta a caracteristicii de -40
dB/dec; -orice pol simplu introduce o panta de -20 dB/dec; -orice pol dublu introduce o panta de -40
dB/dec; -orice zerou simplu introduce o pantd de +20 dB/dec; -orice zerou dublu introduce o panta
de +40 dB/dec; -panta caracteristicii se pastreaza pina la urmatoarea pulsatie de fringere, care poate
proveni dintr-un pol sau zerou. Functie de pulsatia de fringere intilnita, caracteristica amplitudine-
frecventd isi modificd panta, corespunzator regulilor prezentate. Pulsatiile de fringere a
caracteristicii sunt constituite din polii sau zerourile reale, sau partile reale ale polilor sau zerourilor
complex-conjugate. In scopul intelegerii modului de trasare rapidi a caracteristicii Bode
amplitudine-frecventa, se considera functia de transfer de ordinul doi in cele trei variante posibile, si
anume: -cind raspunsul este supracritic, & >/, ecuatia caracteristica are doi poli reali si diferifi
fig.3.18; -cind raspunsul este critic, £ = / , ecuatia caracteristica are doi poli reali si egali, fig.3.19; -
cind raspunsul este subcritic (oscilant) & < I, ecuatia caracteristica are doi poli complexi-conjugati,
iar functie de valoarea factorului de amortizare, comparata cu valoarea 0.6, caracteristicile Bode
vor avea alurile ca in fig.3.20.

NN\ W\ HH
| ;
5

S
0
3
5
-10|
f[Hz]
0.01 0.1 uTt/ q 10
T2
Fig.3.18 Caracteristica Bode A(f) Fig.3.19 Caracteristica Bode A(f) Fig.3.20 Caracteristica Bode A(f)
raspuns supracritic raspuns critic raspuns subcritic

Functie de alura caracteristicii Bode, fata de punctul de amplitudine -3 dB, punct de la care
puterea raspunsului se diminueaza cu 60 %, elementele sau servosistemele vor functiona ca: -filtru
trece jos FTJ (lasa sd treacd raspunsul, care are o frceventa cuprinsa intre 0 si frecventa critica ve);

v
Fig.3.21 Filtru trece jos (FTJ)

-filtru trece sus FTS (lasa sa treaca raspunsul, care are o frecventa cuprinsa intre frecventa critica ve
s1 marginea superiord a domeniului);
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Fig.3.22 Filtru trece sus (FTS)

-filtru trece banda de banda larga sau banda ingusta FTB (BL sau BI) (lasa sa treaca raspunsul, care
are o frecventa cuprinsa intre doua frecvente critice, largimea benzii depinzand de pozitia polilor);

afdb]

T T

" F I
-1
[ L Y f[Hz]
o fl 1 fre 1o TeE 1000
1/Til 1/Tiz
1,/Tdc

— fynctia de transfer initiala
(filtru trece banda de banda larga FTE(EL2)
—— fUnCtia de transfer corectata

(filtru trece banda de banda ingusta FTEEI))

Fig.3.23 Filtru trece banda de banda larga si de banda ingusta (FTB(BL)), (FTB(BI))

-filtru opreste banda de banda larga sau banda ingusta FOB (BL sau BI) (opreste raspunsul, care
are o frecventa cuprinsa intre doua frecvente critice)

Fig.3.24 Filtru opreste banda de banda larga si de banda ingusta (FOB(BL)), (FOB(BI))
-filtru trece banda-opreste banda de banda larga sau banda ingusta FTB-OB (BL sau BI) (lasa sa

treaca raspunsul care are o frecventd cuprinsd intre primele doud frecvente critice §i opreste
raspunsul care are o frecventa cuprinsa intre alte doua frecvente critice);
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Fig.3.25 Filtru trece banda de banda larga si opreste banda de banda larga (FTB(BL)OB(BL))

3.4.ANALIZA COMPORTARII DINAMICE iN SPATIUL STARILOR

Spre deosebire de modelele functionale, reprezentarea servosistemelor in spatiul starilor
presupune folosirea unui vector de stare cu ajutorul caruia se poate defini starea sistemului in orice
moment. Starea unui servosistem reprezintd o cantitate de informatie despre sistem, cu ajutorul
careia se poate stabili evolutia sa viitoare, daca se cunoaste marimea de intrare.

Vectorul de stare apartine spatiului » dimensional, numérul componentelor depinzand de
ordinul ecuatiei diferentiale a servosistemului analizat. De reguld, acest vector de stare se noteaza
cu x si are n componente x (X1,X2,X3,....Xn).

Analiza in spatiul starilor prezintd urmatoarele avantaje: -oferd informatii privind evolutia
sistemului cind se cunoaste marimea de intrare; -conduce la determinarea unei functii de transfer
globale (pentru intreg servosistemul), utilizand modelarea multipolar-matriciald; - asigura
determinarea usoara si rapida a oricarei marimi de iesire, cunoscand marimile de intrare si vectorul
de stare; - asigura, pe baza modelului multipolar, o analiza rapida a comportarii dinamice, etc.

Schema bloc in spatiul starilor poate fi urmarita in fig.3.26.

Ui Yi
: (x) :
—» >

Fig.3.26 Reprezentarea generala in spatiul starilor

Ecuatiile generale in spatiul starilor sunt:
(x(2)) = [A)(x(6)) + [B)(u(?)) -ecuatia de stare (3.71)
s
(y(®)) = [C)x(®))+ [D)u(?)) -ecuatia de iesire, (3.72)
unde: (u(t)) eR™ este vectorul marimilor de intrare; -(x(2)) eR™' —vectorul marimilor de stare;
(v(t)) eR™!- vectorul marimilor de iesire; - [4] eR™ -matricea de stare a elementului sau sistemului;
[B] ] eR™ -matricea de comanda; -/C] ]eR™"-matricea de observare; -/D]eR™" -matricea de
legatura directa.

O reprezentare a starii in spatiul R/4,B,C,D/, a unui sistem dinamic liniar, se poate obtine
plecand de la schema de simulare a sistemului, compus din functii elementare de tip sumator,
multiplicator cu o constanta, integrator, etc.

Se considera o functie de transfer de tip PD:Ts, ca fiind cea mai utilizatd In modelarea
comportarii dinamice a elementelor si sistemelor mecanice si mecano- electrice de forma:

y(s) b,s* +bs +b,

. 3.73
u(s) s +a,s’+as+a, 3.73)

Pentru a se obtine forma canonica guvernabild, functia de transfer se exprima astfel:
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¥(s) _ p(s) 2(s) (3.74)
u(s) z(s) u(s) .

unde:
X _ b,s* +bs +b,
z(s)

si
z(s) 1

u(s) s+ a,s’ +as+a,
Din aceste doua functii de transfer se deduc cele doua ecuatii diferentiale, unde variabila z(?)
este o variabild intermediara de calcul:
2(s)-(s* +a,s" +as+a,) = u(s).

Dupa aplicarea transformatei inverse Laplace se obtine:

d—SZ——a d—zz—a—z—a z4+u(t) si
dr’ dir tar "

d*z dz
y(l‘)=b2?+b15+b02(t).

Aceste ecuatii conduc la schema de simulare din fig.3.27.
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Fig.3.27 Schema bloc de simulare -forma canonica guvernabila

Considerand iesirile din integratoare ca fiind componente ale vectorului de stare, se obfine
urmatorul model matematic:

X =z
dz dx
x2 = — = —
dt dt
d’z  dx,
x3 = —2 = —
dt dt
de, _d'z_ ayX, — a,x, — a,x, +u(t)
dt dt3 07*1 172 273
din care rezultd modelul in spatiul starilor:
X, =X,
X, = X

] (3.75)
Xy = —AyX, — a; X, — a,X; + u(t)

y(t) = byx, + bx, + byx,
Modelul matriceal va fi de forma:
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i, 0 1 07(x) (0
L=l 0 0 1 ||x |+ 0]u@

X, —a, —a —a,|\x 1 (3.76)
X

v =[b, b b x |+ (0)-u@)
X3

Aceasta reprezentare este forma canonicad guvernabila.
Pentru determinarea formei canonice observabile, functia de transfer se scrie sub forma:

s3y(s) = Sz(bzu —a,y)+s(bu —a,y) + (bu —a,y) , sau
bu—a,y N bu—ay N by —a,y

y(s) = 5 ; (3.77)
s s s
Marimea de iesire, y(s) se mai poate exprima astfel:
1 1 1
(s) = E{bzu —4y+ ;[blu —aqy+ ;(bo” —ag )]} (3.78)
Dupa aplicarea transformatei inverse Laplace, se determina functia indiciala, y(?):
Y(O) = xyg + [ = ayy + 3 + [ [ — ayy + x5, + [ (bu — ay)di\de}dt (3.79)
0 0 0

Ecuatia conduce la o schema de simulare ca in fig.3.28.
Ut

Fig.3.28 Schema bloc de simulare -forma canonicé observabila

Ecuatiile de stare, in acest caz sunt reprezentate de:
X = byu(t) — a,y(?)
X, = bu(t) —ay(t) + x,

. . (3.80)
Xy = byu(t) —a,y(t) + x,
(1) = x; + x5
Matriceal, modelul matematic in spatiul starilor are forma:
X, 0 0 —a,|(x b,
X =1 0 —a ||x,|+]|b |-u(?) (3.81)
X, 01 —a,| \x b,
X
y@)=[0 0 1]-|x, [+(0) u().
X3

Matricile componente sunt 1n acest caz:
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0 0 —aq, b,
A=[1 0 —a |,B=|b |,C=[0 0 1lD=0.
01 —a, b,

Aceasta reprezentare este forma canonicd observabila.
In cazul in care sistemul are trei poli reali si diferiti pi, p2, p3, functia de transfer este de

forma:
y(s) _ b,
u(s) (s+p)s+py)(s+p;) .
Dupa descompunerea in fractii simple se obtine:
y(s)= b, . 1 N b, . 1 N b, . 1 sau
u(ts) (p,—pP)ps—p) s+p, (pr—p)ps—p) s+p, (p—p)p,—P3) s+,
J’(S): 4 + a, + a; .
u(s) s+p s+p, s+p
Fig.3.29 Schema bloc de simulare — reprezentarea diagonala
Ecuatiile de stare, in acest caz sunt:
X =x,p) +oqu(?)
):Cz =X, P, + ,u(?) ‘ (3.82)
Xy = X3 p5 + au(l)
y(t) =x +x,+Xx,
Sub forma matriceald, ecuatiile din spatiul stérilor, devin:
X p, 0 0] (x a,
(=10 p, 0 ||x, |+, | u®) (3.83)
X 0 0 piflx a;
Xy
y(t) = [1 1 1]- X, |+ (O)u(t) , in care componentele de stare
X3
sunt:
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pn 0 0 a
A=0 p, 0| B=|a,|C= [1 1 1],D =0 si reprezintd forma
0 0 p, a,
diagonald a ecuatiilor de stare.

Un sistem mecanic care cuprinde o masd, un element elastic si un amortizor, se poate
reprezenta prin ecuatia diferentiald generala de forma:

d’y dy
ﬂTz?*‘(ﬂJrTz)Z*'Y:kU (3.84)

unde: Y este raspunsul servosistemului; U- marimea de intrare; 77, T2- constantele de timp.
Se defineste vectorul de stare al servosistemului, vectorul de forma x(x;,x2):

x =Y
dy 3.85
x,=—=Y"=x (3.85)
dt
Dupa unele inlocuiri se obtine urmatorul model matematic:
x| =x,
, k T, +T, 1
X, = U - X, — X, 386
IT, IT, I\T, (3.86)

Y =]l O](xl,xz)T

Relatia (3.86) se poate scrie matricial:

. 0 1 0
m:_l _’E+Tz[’”J+Lu(r>
) | rr, 1T, N |17,

X
X

(3.87)
Y =|10|

2

In caz general, dupa aplicarea transformatei Laplace si inlocuirea matricei Y in prima relatie
(3.71), se obtine expresia functiei de transfer globale:

Y(s)=c'[s] — A "' x, +c"[s] — A1 BU(s) + DU(5s) (3.88)

iar functia de transfer pentru sistemul multivariabil are expresia: (3.89)

H(s)=c"[sI-A]'B+D

unde matricile ¢, 4, B si I au expresiile:

0 1 0 1 0
CT:‘I 0:4=|_ 1 _]I+7;‘B: k |7
> ’ > 0 1 (3.90)
L,  TL | |17

Cu ajutorul functiei de transfer globale H(s), relatia (3.89), se vor putea interpreta
performantele comportarii dinamice a intregului servosistem, precum si intre diversele componente.
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