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2.3. MODELAREA PE BAZA ANALIZEI FENOMENOLOGICE 

Modelarea comportării dinamice pe baza analizei fenomenologice presupune ca pe baza unor 

rezultate experimentale parţiale, să se poată determina alte valori, fie  prin interpolarea precedentelor, fie 

prin testarea cu ajutorul unor programe de calcul specializate, a unor funcţii şi expresii globale, care din 

punct de vedere al modelelor fizice, s-ar apropia de comportarea dinamică a servosistemului supus 

analizei. Etapa este însoţită de determinarea, compararea şi ajustarea modelului matematic propus iniţial 

pentru modelul fizic.      

Ca metode de interpolare sau de determinare a modelelor matematice, care aproximează cel mai 

bine unele date determinate experimental, se pot enumera: 

-utilizarea polinomului de interpolare Lagrange, care constă în a determina ordonata unui punct 

experimental, pentru o valoare propusă pentru abscisă, valoare obţinută prin interpolare, cu ajutorul unei 

relaţii de forma: 
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unde: z-valoarea propusă pentru abscisa punctului, stabilită prin interpolarea punctelor determinate 

experimental; xi-abscisele punctelor determinate experimental; wi-funcţia de intepolare; yi-ordonatele 

punctelor determinate experimental;  

-utilizarea polinomului de aproximare prin metoda celor mai mici patrate de forma: 

                                f x c c x c x c xn

n( ) ...= + + + +0 1 2

2
                                                 (2.17) 

-utilizarea funcţiilor de interpolare cubică, spline, de forma: 

                  f x c c x x c x x c x xi i n i

n( ) ( ) ( ) ... ( )= + − + − + + −0 1 2

2
.                            (2.18) 

Metodele propuse, după cum se poate observa, utilizează valori ale unor puncte determinate pe 

baza cercetării experimentale a elementului sau servosistemului supus analizei şi completează aceste 

puncte cu altele, determinate analitic pe baza precedentelor. 

 

 2.4. ANALIZA SEMNALELOR.TRANSFORMATA FOURIER 

 În general în tehnica servoacţionărilor utilizate în construcţia roboţilor şi manipulatoarelor, 

elementele componente se reprezintă sub forma cuadripolilor cu diporţi de intrare-ieşire a semnalului, 

bine precizate. Oscilaţia aplicată la bornele de intrare este denumită de obicei semnal, iar cea de la ieşire 

este răspunsul circuitului sau componentei servosistemului, la semnalul aplicat. Răspunsul componentei 

i a servosistemului constituie semnal pentru componenta următoare, i+1. 

 Mărimile de intrare (semnale) şi cele de ieşire (răspunsuri), pot fi exprimabile funcţie de timp sau 

funcţie de una sau mai multe coordonate generalizate. Funcţie de aceasta, semnalele pot fi deterministe 

sau întâmplătoare. 

 Un semnal este determinist dacă este exprimabil funcţie de timp, x(t); semnalul sinusoidal este 

determinist pentru că se poate scrie : 

                                                             x(t)=Asin(t+) 

presupunând amplitudinea A, frecvenţa unghiulară  şi faza iniţială  ca marimi constante. 

 Semnalul determinist poate fi calculat pentru orice moment t , fiind previzibil pe un interval de 

timp nelimitat. 

 Un semnal întâmplător nu poate fi exprimat funcţie de timp şi nu este previzibil. 

 Semnalele pot fi continue sau discontinue şi aceasta indiferent de faptul dacă sunt deterministe 

sau aleatoare. Discontinuităţile sunt efectul evoluţiei procesului fizic reprodus de semnal, sau sunt 

introduse în mod artificial în construcţia servosistemului, în vederea prelucrării convenabile a 
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semnalului. În fig.2.2 este arătat un semnal continuu, iar in fig.2.3 un semnal discontinuu, determinat de 

nivelurile discrete x1,x2,....xn; acesta din urmă poate fi obţinut printr-o operaţie de cuantizare a semnalului 

continuu anterior.                         

                   
                        Fig.2.2 Funcţia continuă        Fig.2.3  Funcţia cuantizată     Fig.2.4  Funcţia eşantionată 

 

 Uneori este util (vezi fig.2.4) ca discretizarea să se facă pe axa timpului în sensul ca semnalul 

continuu să fie reprezentat  printr-o succesiune de valori, considerate la momente distincte; aceste valori 

reprezintă eşantioane ale semnalului continuu. Făcând cuantizarea nivelurilor semnalului şi eşantionarea 

pe axa timpului, se obţine semnalul din fig.2.5.    

      . 
Fig.2.5 Funţia eşantionată şi cuantizată 

 

 Cuantizarea este avantajoasă deoarece permite reprezentarea chiar şi aproximativă, a semnalului 

continuu printr-un număr limitat de niveluri diferite. Aceste niveluri pot fi reprezentate codificat, fapt 

care conduce la formarea semnalelor numerice (cifrice sau digitale ) din ce în ce mai intens folosite. 

 O altă clasificare a semnalelor se referă la faptul dacă acestea sunt modulate sau nu. Modulaţia 

presupune existenţa unei oscilaţii purtătoare de frecvenţă mai mică, cu parametrii influenţaţi direct de 

semnalul modulator. În tehnica analizei comportării dinamice a servosistemelor întâlnim frecvent astfel 

de semnale modulate. 

 Analiza unui semnal x(t) constă în echivalarea sa printr-o sumă de semnale elementare de forma:                                                     
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în care an  sunt coeficienţii, iar f tn( )- expresiile analitice ale semnalelor elementare. Evident, este bine 

ca funcţiile f tn( ) să fie reprezentabile analitic într-un mod cât mai simplu. Relatia (2.19) este deosebit de 

importantă în cazul circuitelor liniare, la care este aplicabilă teorema superpoziţiei. Dacă y(t) si (t) sunt 

răspunsurile elementului sau servosistemului liniar, sau considerat liniarizat pe porţiuni, la semnalele 

x(t), f tn( ) atunci se poate scrie: 
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 Se observă că răspunsul la semnalul x(t) se deduce prin însumarea răspunsurilor parţiale, obţinute 

pentru semnalele elementare f tn( ); de regulă răspunsurile parţiale sunt calculate fără dificultăţi prea mari. 

Analiza semnalului constă în determinarea coeficienţilor an , atunci când este dat semnalul x(t) şi când 

este precizat setul de funcţii f tn( ). Alegând setul de funcţii f tn( ), astfel încât el să se bucure de 

proprietatea de ortogonalitate, se stabilesc relaţii simple pentru calculul coeficienţilor an . 

 Între două funcţii ortogonale, se stabileşte relaţia integrală: 
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                                                 t0+T 

                                                   2)()( Cdttftf nm = , dacă m=n 

                                               t0                      

                                                                                   0, dacă  mn                      (2.21) 

unde: t0 este un moment oarecare, T - domeniul de ortogonalitate, iar C - norma funcţiilor. Când C=1 

setul de funcţii este ortonormat. 

 Dacă una dintre funcţii este o constantă A, atunci din condiţia de ortogonalitate: 

                                                       2CAdtA = , rezultă valoarea constantei  A 

                                                               A
C

T
= . 

 Înmulţind ambii membrii ai egalităţii (2.19) cu funcţia f tm( )  şi apoi integrând ăn intervalul de 

ortogonalitate, rezultă: 
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 Ţinând seama de condiţia de ortogonalitate, se obţine formula: 
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 Se presupune că ar exista o altă dezvoltare: 

x t b f tn n

n

N

1

0

( ) ( )=
=

  

constituită cu alţi coeficienţi bn , dar cu acelaşi set de funcţii f tn( ). Eroarea medie pătratică de aproximare, 

mărime pozitivă, sau cel puţin nulă, este: 
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 După dezvoltarea parantezei şi ţinând cont de condiţia de ortogonalitate a funcţiilor f tn( ) , se 

găseşte eroarea: 
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 Se observă că eroarea medie pătratică este minimă în raport cu alegerea coeficienţilor bn , atunci 

când bn =an , deci când coeficienţii dezvoltării semnalului x(t) sunt calculati cu formula (2.22). Deoarece 

D0,  se deduce inegalitatea Bessel: 
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 Dacă N→, inegalitatea Bessel conduce la egalitatea lui Parseval: 
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 Totalitatea coeficienţilor an , eventual reprezentaţi pe o axă, constituie spectrul semnalului, iar 

coeficienţii însişi sunt amplitudinile componentelor spectrale. 

 Din egalitatea Parseval se deduce că membrul drept este energia semnalului şi se calculează prin 

însumare spectrală: fiecare componentă dă o contribuţie energetică proporţională cu pătratul amplitudinii 

sale. 

 Puterea semnalului mediată pe întreg intervalul de ortogonalitate T este egală cu: 
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 Din relatia (2.26) se determină cel mai important parametru cantitativ al comportării dinamice, 

valoarea eficace a semnalului (rădăcina mediei pătratice), RMS (root mean square), care conţine 

informaţii privind energia oscilaţiei semnalului: 

                                                                   dttx
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şi care ţine cont de desfăşurarea în timp a oscilaţiei şi creşte odată cu energia acesteia, fiind deci o măsură 

pentru analiza oscilaţiei. În general la frecvenţe joase se recomandă măsurarea deplasărilor sau a 

vitezelor, iar la frecvenţe înalte, măsurarea acceleraţiilor.    

 Aceasta se datoreşte atât limitării răspunsului în frecvenţă al aparatelor de măsură cât şi 

sensibilităţii specifice a diferitelor tipuri de traductoare. Astfel, la frecvenţe înalte, pentru a produce o 

deplasare măsurabilă, sunt necesare forţe foarte mari. 

 Valoarea medie, pe de altă parte, sau valoarea medie absolută (rectificată): 
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ţine cont de desfăşurarea în timp a oscilaţiei, dar este considerată de interes practic restrâns, deoarece nu 

are legătură directă cu nici o mărime fizică utilă. Se recomandă deci, măsurarea valorii eficace. 

 În cazul analizei Fourier bazată pe funcţiile trigonometrice t
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şi: 
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 Analiza Fourier a semnalelor periodice constă în a scrie relaţia: 
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care reprezinta forma trigonometrică a seriei Fourier. 

 Relatia (2.31) mai poate fi scrisă şi sub forma: 
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care reprezinta forma armonică a seriei Fourier. 

 Relatia (2.32) se mai poate scrie: 
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care reprezintă forma complexă sau exponenţială a seriei Fourier.    

 Pentru semnalul periodic, se scrie seria Fourier: 

                                                                      x t A en c

jn t( ) ,=
−

+


1

2

                                                   (2.34) 

unde amplitudinile sunt date de formula : 
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 Întroducând  relaţia (2.35) în relaţia (2.34) se obţine: 
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 Relaţia devine: 
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 Se notează: 
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şi rezultă: 
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 Functia X(j) este transformata Fourier a semnalului x(t), şi este denumită uneori funcţie spectrală 

sau densitate spectrală de amplitudine complexă. 

 Densitatea spectrală de amplitudine, este în general o funcţie complexă. Deoarece semnalul este 

exprimat printr-o funcţie reală x(t), se poate scrie: 

                                                                        X(j)=A()-jB()                                                 (2.40) 

cu notaţiile: 
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 Modulul şi argumentul transformatei Fourier: 
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2.5.FUNCŢII DE TRANSFER. TRANSFORMATA DIRECTĂ ŞI INVERSĂ LAPLACE 

Transformata Laplace este un mijloc de soluţionare a ecuaţiilor diferenţiale prin transformarea 

ecuaţiilor diferenţiale în ecuaţii algebrice. Transformata Laplace transformă o problemă din domeniul 

real al timpului, în domeniul variabilei complexe s, unde s este operatorul Laplace. 

O funcţie reală f(t) de o variabilă reală t>0 , admite o transformată Laplace definită de relaţia: 
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Pentru trecerea din domeniul complex în domeniul real, se foloseşte transformata inversă Laplace 

definită de integrala: 
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Transformata Laplace a unor mărimi de intrare: 
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Transformata Laplace a unor funcţii uzuale: 

-transformata Laplace a unei funcţii de tip diferenţiala de ordinul n este: 
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-tansformata Laplace a unei funcţii de tip integrală: 
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-transformata Laplace a unei funcţii de tip exponenţial : 
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-transformata Laplace a funcţiei de tip sinus: 
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-transformata Laplace a funcţiei de tip cosinus: 
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Prin trecerea din domeniul complex (planul Laplace) în domeniul real, se poate determina funcţia 

indicială. Funcţia indicială reprezintă funcţia care exprimă variaţia în timp a răspunsului unui element 

sau servosistem pentru o anumită mărime de intrare. Reprezentarea grafică a funcţiei indiciale se numeste 

caracteristică indicială. 

Cu ajutorul caracteristicilor indiciale pot fi determinaţi parametrii şi performanţele comportării 

dinamice a elementelor şi servosistemelor. 

În scopul determinării performanţelor globale ale unui servosistem este necesară determinarea 

funcţiilor de transfer pe elementele componente ale acestuia. 

Funcţia de transfer a unui element sau servosistem este determinată de raportul dintre 

transformata Laplace a mărimii de ieşire şi transformata Laplace a mărimii de intrare. 

Se consideră servosistemul definit de schema bloc din fig.2.6. 

 
                                                              Fig.2.6 Schema bloc a unui servosistem 

 

Pe baza algebrei funcţiilor de transfer se determină mărimea de ieşire: 
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pentru mărimi de intrare de tip treaptă, se obţine: 
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unde: k1 şi k2 sunt mărimile de intrare. 

Funcţia indicială se determină aplicând transformata inversă Laplace expresiei precedente: 
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