
Software Reliability
Engineering

Dr. Tahir Jameel

1

Outline
• Self Introduction

• Impact of Software Defects

• Software Reliability

• Software Reliability Models
• Prediction Models
• Estimation Models
• Reliability Analysis on a Case Study

• Conclusion

2

Impact of
Software Defects

3

Dimensions of a Software Project

4

That means there’s always a trade off:
• Cheap + fast = lower quality work
• Fast + good = expensive
• Good + cheap = not happening anytime soon

What are your priorities?

Courtesy: https://medium.com/@devsociety_/good-cheap-fast-pick-two-and-how-ngos-can-play-the-triangle-like-a-pro-20d1380884a8

Fast, Good, Cheap: Pick any 2

Code Size and Complexity is Increasing

Ref: Abella, J., & Cazorla, F. M. (2017). Harsh computing in the space domain. In Elsevier eBooks
(pp. 267–293). https://doi.org/10.1016/b978-0-12-802459-1.00009-9

Ref: Exponential Growth of System Complexity, System Architecture Virtual Integration.
Available at: https://savi.avsi.aero/about-savi/savi-motivation/exponential-system

complexity/ (Accessed: 22 June 2023).
5

F-35 have about 24 Millions Line of Code

Increased Defects Fixation Cost
• Industrial Average: about 15 – 50 errors per 1000 lines

• Microsoft Applications: about 10 – 20 defects per 1000 lines of code during
in-house testing, and 0.5 defect per KLOC in production

• It is possible to achieve zero defects but it is also costly.

• NASA was able to achieve zero defects for the Space Shuttle Software, but
at a cost of thousands of dollars per line of code.

1. Ref: McConnell, Steve. Code complete. Pearson Education, 2004.
2. Ref: Exponential Growth of System Complexity (no date) System Architecture Virtual Integration. Available at: https://savi.avsi.aero/about-savi/savi-motivation/exponential-system-

complexity/ (Accessed: 22 June 2023).
3. Ref: Will bugs scare off users of new Windows 2000? (2000) CNN. Available at: http://edition.cnn.com/2000/TECH/computing/02/17/windows.2000/ (Accessed: 18 June 2023).

“ One report cites a leaked Microsoft memo stating that Windows
2000 has 63,000 known bugs. Microsoft says the bugs, most of which
are trivial, are not a problem” CNN 2000

6

Financial Losses due to Faulty Software
• According to a report by NIST (USA), faulty software costs $59.5 Billion

annually to US economy (2002)

• A research at Cambridge University (2013) showed that the global cost of
software bugs is $312 billion USD annually (Approx.)

• According to the Consortium for Information and Software Quality, poor
software quality cost US companies $2.08 trillion (2020)

Goebelbecker, E. (2022, May 9). How much could software errors be costing your company?. RAYGUN.
https://raygun.com/blog/cost-of-software errors/#:~:text=According%20to%20the%20Consortium%20for,software%20errors%20in%20legacy%20systems. 7

The Explosion of Ariane 5 1996
• Ariane 5 rocket launched by the European Space Agency

exploded just forty seconds after its lift-off

• A 64-bit floating point number was converted to a 16-bit
signed integer

• The number was larger than 32,767, the largest integer
storable in a 16 bit signed integer, and thus the conversion
failed

• Result loss of development cost $7 B. Rocket and its cargo
were valued at $500 M

8Ref: Lions, Jacques-Louis. "Flight 501 failure." Report by the Inquiry Board 190 (1996)

Therac-25 1986
• A radiation therapy machine

• It was involved in at least six accidents

• Concurrent programming error

• It sometimes gave its patients radiation doses that
were hundreds of times greater than *normal

• Result: Serious injury and even loss of life

9Ref: Leveson, Nancy G., and Clark S. Turner. "An investigation of the Therac-25 accidents." Computer 26.7 (1993): 18-41

Investigation of Accidents
• The Therac-20, a predecessor of the Therac-25, employed independent

protective circuits and mechanical interlocks to protect against overdose.

• The Therac-25 relied more heavily on software.

• Moreover, when the manufacturer started receiving accident reports, it was
unable to reproduce the accidents, assumed hardware faults, implemented
minor fixes, and then declared that the machine's safety had improved by
several orders of magnitude.

10Ref: Leveson, Nancy G., and Clark S. Turner. "An investigation of the Therac-25 accidents." Computer 26.7 (1993): 18-41

Coding Errors only?
• Requirement Engineering (~= 20%)

• Software Design (~= 30%)

• Code/ Others (~= 50%)

11Book Ref: Integrated Approach to Software Engineering P. Jalote 2nd Edition

Causes of Common Bugs
• Lack of available calendar time/resources to find all of the defects that can

result in failures

• Exceedingly complex event driven systems that are difficult to
conceptualize and therefore implement and test

• Organizational culture that neglects to support sufficient rigor, skills, or
methods required to find the defects

• Technical decisions that result in incorrect architecture or design decision
that cannot support the stakeholders specifications

• Insufficient project or risk management that leads to schedule delays that
lead to less time for reliability testing

• Operations—Contract issues, interoperability due to bad specifications and
stakeholder communications

Ref: Neufelder, A. (2016). IEEE Recommended Practice on Software Reliability. IEEE Standard, 1633-2016.
12

Relative Cost of Bugs

13
Bugs fixed earlier cost less

50% of my company employees are testers

and the rest spend 50% of their time testing!

Bill gates 1995

14

Can we Quantify Software Quality?
• “Capability of a software product to conform to requirements.“ ISO

• Functional quality is typically assessed dynamically but it is also
possible to use static tests
• When to stop testing?

• "You cannot control what you cannot measure.“ (Tom DeMarco)
• But how to quantify quality of software? Quality in numbers?

• How much a user can depend on a Software?
• What can be the actions to enhance dependability of software?

• The answers of these questions is “Software Reliability”
15

Software Reliability

16

“The ability of a system or component to perform its required
functions under stated conditions for a specified period of time.”

IEEE Std 610.12-1990

Software Reliability

• Examples:
• An aircraft should fly for six hours (mission time) without

any failure after fueling.
• The system must perform without failure in 95 percent of

use cases during a month

17

System Reliability

Hardware
Reliability

Software
Reliability

Operator
Reliability

System
Reliability

Manufacturing
Perfection

Design
Perfection

Operator
Training/ SOP

18

Uniqueness of Software Reliability
• Non-tangible, complex operations

• Not manufactured but designed, no faults such as machining, processing etc.

• Software does not wear out as a function of calendar time but usually obsolete

• Fault discovery is related to how much the software is exercised

• Software has frequent changes → requirements change, bug fix, improvement

• Fixing of software bug may introduce a potential defect

• Software Reliability increases with time whereas in Hardware; reliability
decreases due to aging

• Evaluation of Software reliability is entirely different from hardware reliability

19

Software Reliability
Models

IEEE 1663:2016

20

Reliability Models
• Software quality is the most challenging aspect of software

development industry and Reliability is one of the key aspects of
software quality.

• Reliability is evaluated at different stages of development life cycle
and the models are divided into two types:
• Prediction: Used in early stages of SDLC when software is not

developed/ testable, is based on metrics and historical data.
• Estimation/Growth: Used when software is developed, is based

failure data collected during testing

21

Prediction Models
IEEE 1663:2016

22

Prediction Models
• Predictive models can predict software reliability in early stages of

SDLC based on software metrics and size

• Initially, reliability growth estimation models were proposed

• Reliability estimation (use failure data) is very late in SDLC
• to enhance software reliability we have to redesign the software
• cost of redesign/ rework is very high

• Prediction model was proposed by Rome Lab in 1978 to predict
reliability early phases of SDLC
• before a testable software is developed
• actions can be taken preemptively to achieve desired reliability

23

Prediction Models…
• Use actual historical data from real software projects.

• The user answers a list of questions which calibrate the historical data
to yield a software reliability prediction.

• The accuracy of the prediction depends on:
• How many parameters (questions) and datasets are in the model.
• How current the data is.
• How confident the user is of their inputs.

24

Prediction Models

Model Inputs Predicted
Output

Industry
Supported

Year Developed/
Last Updated

Industry Tables 1 Defect Density Several 1992, 2015

CMMI Tables 1 Defect Density Any 1997, 2012

Shortcut model
Neufelder

23 Defect Density Any 1993, 2012

Full-scale model
Neufelder

94-299 Defect Density Any 1993, 2012

Historical data Minimum 2 Defect Density Any NA

RADC TR-92- 52 43-222 Defect Density Aircraft 1978, 1992

Ref: Neufelder, A. (2016). IEEE Recommended Practice on Software Reliability. IEEE Standard, 1633-2016.
25

Steps to Predict Software Reliability
• Step 1. Predict the defect density

• The size is predicted so as to yield the total predicted defects

• Step 2. The fault profile is predicted.
• How software will be deployed and its duty cycle

• Step 3. The failure and MTBF, MTBCF are predicted.

• Step 4. Predict reliability

• Step 5. Predict availability

26

Predict the Defect Density
• We used Neufelder’s Shortcut Model in our surveys

• It predicts defect density of the software under test (no. of defects/ KLOC)

• Shortcut model is based on 23 Questions related to Strengths and Risks of
the software under test

• Based on the survey, the model predicts defect density (DD)
• Strengths-Risks ≥ 4 predicted DD = 0.110
• Strengths-Risks ≤ 0.5 predicted DD = 0.647
• Otherwise DD = 0.239

• Total predicted defects = DD x Total Size (predicted)

Ref: Neufelder, A. (2016). IEEE Recommended Practice on Software Reliability. IEEE Standard, 1633-2016.
27

Ref: Neufelder, A. (2016). IEEE Recommended Practice on Software Reliability. IEEE Standard, 1633-2016.
28

Data for Reliability Prediction Analysis
• Data for different case studies from different software houses in Islamabad

was collected for Reliability Prediction analysis

• This data was then used to predict the reliability of software systems using
Shortcut Model.
• Case Study 1 (URR)
• Case Study 2 (LM)
• Case Study 3 (WW)
• …

29

Case Study 1

Project Name Version Version Date

URR Confidential April, 2023

Size of Code 7000 KSLOC

Defect Density (Shortcut Model) 0.11

Total Number of Defects 770

Defects in 1st Month 90.4

Failure Rate / Hour 0.6

MTBF (1st Month) 1.65

Availability(1st Month) 40.8%

Reliability(1st Month) 88.6%

Reliability(2nd Month) 89.9%
link

30

Case Study 2
Project Name Version Version Date

LM 41 17 May, 2023

Size of Code 220 KSLOC + 2MB DLLs

Defect Density (Shortcut Model) 0.11

Total Number of Defects 91.52

Defects in 1st Month 10.75

Failure Rate / Hour 0.105

MTBF (1st Month) 9.48

Availability(1st Month) 93.3%

Reliability(1st Month) 99.5%

Reliability(2nd Month) 99.6%
link

31

Case Study 3
Project Name Version Version Date

WW 1.9 5 April, 2023

Size of Code 299 KSLOC + 301MB DLLs

Defect Density (Shortcut Model) 0.239

Total Number of Defects 22084

Defects in 1st Month 5414

Failure Rate / Hour 30.079

MTBF (1st Month) 0.033

Availability(1st Month) 25.2%

Reliability(1st Month) 86.2%

Reliability(2nd Month) 89.4%

link

32

Research Directions
• AI based software reliability prediction model

• Challenge is availability of data

• Augmenting Rome Lab Model
• Unifying related metrics
• Adding new metrics

33

RELIABILITY
METRICS

Basic
Project
Management

Product

Process

Fault and Failure

Requirement

Design and Code

Testing

Size
Function Point Metric
Test Coverage Metric
Complexity
Quality Metric

No. of Developers
Cost and Schedule
Productivity

MTTF MTBF
MTTR POFOD
ROCOF AVAIL Failures found after Release

Customer Reviews

URD
SRS

Complexity
Size
ModularityCode Evaluation

Test Plans
V&V

Effort Required
Time for Production
Effectives of Defect removal process

34

Rome Lab Model

• It is composed of 172 different questions

• Factors of Rome Lab are
• Application type
• Development
• Complexity
• Traceability
• Anomaly
• Quality review and
• Standard review

Determine the number of modules with complexity >= 20
Determine the number modules complexity >= 7 and <20
Determine the number modules complexity < 7

35

Rome Lab Model metrics and their variables interlinked with each other with direct and indirect relationship

System dynamic model (Vensim)
to determine interconnection
between the metrics

36

37

Advantages of Reliability Prediction
• Reliability Prediction gives us an idea about the reliability that can be

achieved based on current information

• The actions can be taken proactively to improve the reliability of the
software product to achieve the desired reliability

• Predicted Defect Density gives a quality measure of development and
testing process

• Number of defects predicted is a theoretical target for testing team, it can
help to decide (along with other factors), “when to stop testing”?

• Factors contributing the defect density can be identified and to lower the
defect density sensitive areas can be augmented which directly contributes
the reliability

38

Growth Estimation
Models

IEEE 1663:2016

39

Growth Models
• Growth models are based on failure data during testing phase to forecast

the failures in future. They are used with an assumption that the reliability
of the system improves after testing.

• They provide information of:
1. Time for the occurrence of next faults
2. Number of faults expected in software life
3. Reliability
4. Additional testing required to achieve a certain level of reliability
5. Release of Software
6. When to stop testing

• Examples Goel-Okumoto, Basic Execution Time Model etc.

40

Need of Software Reliability Models
• It is therefore necessary to develop a practical and applicable model that

can determine:
• Software failure growth trend
• Predict the number of failures and software reliability given a specific

period of operating time
• Propose the optimal release time of new products
• Schedule the delivery time for the next release based on the reliability

level of previous release.

41

Prediction vs Growth Model

Ref: Neufelder, A. (2016). IEEE Recommended Practice on Software Reliability. IEEE Standard, 1633-2016.
42

Estimation Models

43

Software Reliability Estimation Models
• Software failure data collected during software testing phase is used to

compute reliability of the system.

• Different software reliability models are applied on the data to give
statistical estimations of the reliability

• Software reliability Estimation models are classified into two types:
• Deterministic Models
• Probabilistic Models

44

Reliability Estimation Models

Deterministic Models Probabilistic Models

No. of Distinct operators, operands
No. of errors
No of Machine Instructions
Program structure analysed

Halstead’s software
MetricNo. of errors in program

McCabe’s cyclomatic
complexity metric remaining
defects

Failure Occurrence and Fault
removal Probabilistic Event

Error Seeding

Mills' Error Seeding
Model

Failure Rate
Models

JM Model
GO Model
Schikt Wolverton
Model

Curve Fitting

Estimation of Errors
Model
Estimation of
Complexity Model
Estimation of Failure
Rate Model

Markov Structure
Models

Depends only on
current state

45

Deterministic Models
• Deterministic models study:

1. Distinct operators of a program, operand errors and instructions.
2. The branches in a program to study its control flow.
3. The data flow of program (Data sharing and passing)

• Well known deterministic models are Halstead’s software metric and
McCabe’s Cyclomatic complexity metric

• Provided innovative quantitative approach to measure quality.

• Doesn’t consider random events, so not suitable for modern software.

46

Probabilistic Models
• These models consider failure detection and failure removal as probabilistic

models.

• Classification of these models is:
• Error Seeding
• Failure Rate
• Curve Fitting
• Reliability Growth
• Markov Structure
• Time Series
• NHPP.

47

Software Reliability Growth Models
(SRGM)
• SRGM helps in rendering a balanced amalgamation in terms of expense, reliability,

productivity and performance.

• A SRGM follows NHPP distribution that gives an estimated count of faults for both
calendar as well as running timeline.

48

Basic Assumptions
• The program contains N initial faults which is an unknown
• Each fault in the program is independent and equally likely to cause a

failure during a test.
• Time intervals between occurrences of failure are independent of

each other.
• Whenever a failure occurs, a corresponding fault is removed with

certainty.
• The fault that causes a failure is assumed to be instantaneously

removed, and no new faults are inserted during the removal of the
detected fault.

49

Model Program
Failure Rate Reliability Parameters Assumptions

Jelinski
Moranda

ɸ = a proportional constant, the
contribution any one fault makes to
the overall program
N = the number of initial faults in
the program
ti = the time between the (i-1)th and
the ith failures

Software Failure rate is initially
a constant and is proportional to
remaining faults in the program

Geometric
D= Initial program failure rate
k= parameter of geometric function

Software Failure rate is initially
a constant and decreases
geometrically with time

Goel
Okumoto

a= expected total number of faults
before testing
b= failure detection rate/ failure
Intensity

Software Failure detection rate
is time dependent and constant.

Delayed S
shaped

a= expected total number of faults
before testing
b= failure detection rate/ failure
Intensity

Software Failure rate is time
dependent and differs among
faults.

Weibull
ϴ= Scale Parameter
β = Shape Parameter
γ = Location Parameter

Used for both hardware and
software systems
Fluctuating Hazard Rate
function

50

Application of SRGM for
Reliability Estimation

51

Steps for Reliability Estimation
• Following are the steps that need to be taken to compute Reliability using SRGM:

1. Failure Data
Collection, Analysis

and Filtering

2. Data
Categorization

3. Laplace Trend
Analysis

4. Model
Selection (SSE,

MSE, AIC)

5. Parameter
Estimation (LSM,

MLE)

6. Failure Density,
Number of Faults

and Reliability

52

SFRAT University of Massachusetts Dartmouth

• SFRAT is Web based software reliability testing suite written in R

• Can take failure data in both interval and time domain format.

• User friendly interface.

• Uses failure data during testing to evaluate reliability and failure intensity.

• Uses 5 well known reliability models to fit on the failure data.

• Can perform all the tasks required for the application of growth models on the
testing data.

• Also provides prediction about occurrence of future failures and reliability of
system in a known period of time

Ref: Fiondella, L. (2019). Software Failure and Reliability Assessment Tool (SFRAT). UMASS Dartmouth. https://lfiondella.sites.umassd.edu/research/software-reliability/ - 53

Software Failure Data
• Software Failure Dataset was also acquired for the URR software on which

prediction analysis was performed

• The dataset contains total of 136 failures.

• The time for occurrence of each failure is also given in seconds.

• The inter failure time is also computed and added in the dataset.

• Small snaps of the used data are given below:

.

.

.

54

Cumulative Failures vs Time plot

55Ref: Fiondella, L. (2019). Software Failure and Reliability Assessment Tool (SFRAT). UMASS Dartmouth. https://lfiondella.sites.umassd.edu/research/software-reliability/

Laplace Trend Analysis
• The Laplace trend test can determine whether the system is deteriorating,

improving, or if there is no trend at all.

• When a full-scale reliability program is not in place, the Laplace Test can be
used to quantify trends of undesired events for each system element and
any combination.

• As a proactive step, this helps management to identify and prioritize
elements that need further analysis (e.g., verification, root cause) and
possible remedial or corrective action.

• This measure approximates the standardized normal random variable (e.g.,
z-score).

56

Working

0 Titf/2

0 Titf/2

0 Titf/2

Constant Reliability

Increasing Reliability

Decreasing Reliability

57

Decreasing Trend of Software Failures
• Laplace Trend Analysis was done on the dataset and it was found that system

shows increasing reliability.

58Ref: Fiondella, L. (2019). Software Failure and Reliability Assessment Tool (SFRAT). UMASS Dartmouth. https://lfiondella.sites.umassd.edu/research/software-reliability/

Model Mapping on Test Data
• 5 Reliability Growth models are mapped on the failure data.

• From the mapping and results of AIC, we found out that Geometric model
is the best fit.

Model AIC Value

Delayed S Shaped Model 2075

Geometric Model 1937

Goel Okumoto Model 1953

Jelinski Moranda Model 1950

Weibull Model 1938

59

AIC (Akiake Information Criterion)
is used for Model Selection
When a model is used to map given

AIC estimates relative amount of
information lost during mapping by
all models

Less information lost, better the
model.

Applying Model

60Ref: Fiondella, L. (2019). Software Failure and Reliability Assessment Tool (SFRAT). UMASS Dartmouth. https://lfiondella.sites.umassd.edu/research/software-reliability/

Geometric model mapped on the test
data (red curve)

61Ref: Fiondella, L. (2019). Software Failure and Reliability Assessment Tool (SFRAT). UMASS Dartmouth. https://lfiondella.sites.umassd.edu/research/software-reliability/

Reliability Analysis
• Since the mission time of software is 0.25 hour, so 900 sec time was used for the

estimations

• We can get following information from the reliability analysis:
• The prediction of time of next failures.
• Reliability of the system at next failures.
• Defect density of the system at each failure.
• Time to achieve desired reliability.
• Expected time of next failure.
• Number of failures in specified time period.

• In this example, reliability at next 1st failure is predicted.

62

Reliability
increases with
time

Failure
intensity
decreases
with time

Reliability Estimation using Geometrics Model

63Ref: Fiondella, L. (2019). Software Failure and Reliability Assessment Tool (SFRAT). UMASS Dartmouth. https://lfiondella.sites.umassd.edu/research/software-reliability/

Reliability Analysis of URR (Case Study 1)

• Following are the details of the analysis performed:

Predicted Reliability 88.6 %

Estimated Reliability at 136th failure 65.8%

Failure Intensity at 136th failure 0.00046

Reliability at 137th failure 66.4%

Failure Intensity at 137th failure 0.00045

Time required to achieve 90%
reliability

76 hours

Expected number of failures in next
mission time (900 sec)

0.417

Expected time to next Failure 0.6 hour
64

Reliability Growth

65Ref: Fiondella, L. (2019). Software Failure and Reliability Assessment Tool (SFRAT). UMASS Dartmouth. https://lfiondella.sites.umassd.edu/research/software-reliability/

More Reliability related Information

66Ref: Fiondella, L. (2019). Software Failure and Reliability Assessment Tool (SFRAT). UMASS Dartmouth. https://lfiondella.sites.umassd.edu/research/software-reliability/

Conclusion
• Software reliability poses unique challenges as compared to Hardware

Reliability

• There are three phases in which reliability evaluation can be performed:
• Development Phase -> Prediction Model (Metrics)
• During Testing Phase -> Estimation Model (Failure Data)
• Operation Life -> Estimation Model (Failure Data)

• Reliability prediction helps to predict reliability earlier to enable reliability
enhancement by taking proactive measures and to avoid rework

• Reliability estimation gives actual reliability at a particular point of time

• Software Reliability is significant measure for evaluation of dependable
software

67

