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MODELAREA MATEMATICĂ A SISTEMELOR 
                                        

Modelul matematic al unui sistem automat este constituit dintr-un ansamblu de ecuaţii algebrice 

şi diferentiale, care exprimă cel mai fidel variaţia în timp a unei mărimi de ieşire, funcţie de o anumită 

mărime de intrare. 

Pentru obţinerea modelului matematic trebuie parcurse următoarele etape: 

-se descompune sistemul dinamic în componentele de bază, sau în elemente a căror modelare este mai 

simplu de efectuat, încercându-se echivalarea acestora cu elemente liniare sau liniarizabile pe porţiuni; 

-se scriu relaţiile caracteristice ale fiecăruia din aceste elemente dinamice, căutându-se a se exprima 

matematic cât mai fidel, fenomenele fizice care guvernează comportarea dinamică a acestora; 

-se scriu relaţiile privind conexiunile dintre elementele dinamice, care rezultă din însăşi etapa anterioară.  

Din ansamblul relaţiilor determinate anterior, se încearcă a se obţine o ecuaţie unică, între 

mărimea de intrare şi mărimea de ieşire, ecuaţie liniară sau liniarizabilă pe porţiuni, când se poate 

considera elementul sau sistemul ca fiind de tip dipol. 

Modelul matematic exprimat sintetic sub forma unei singure ecuaţii va avea forma: 
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unde: e este mărimea de ieşire, iar i - mărimea de intrare. 

 

2.1. LINIARIZAREA MODELELOR MATEMATICE  

 Majoritatea sistemelor dinamice reale conduc la modele matematice neliniare. Experimental, 

sistemele neliniare pot fi uşor deosebite de cele liniare, prin determinarea răspunsului la dublarea 

semnalului de intrare, la excitarea cu un semnal de tip treptă. Dacă amplitudinea semnalului de ieşire nu 

se dubleaza ci capătă o valoare oarecare, servosistemul este neliniar. Liniarizarea modelului matematic 

cuprinde: -liniarizarea modelului matematic al fiecărei componente prin dezvoltare în serie Taylor, sau 

liniarizarea pe porţiuni, în jurul unor puncte de funcţionare, cu introducerea coeficienţilor de corecţie; -

asimilarea unor modele matematice cu funcţii neliniare elementare uzitate, şi liniarizarea acestora, 

funcţie de tipul fiecăreia. Cu cât domeniul de funcţionare ales pentru liniarizare este mai mic cu atât 

aproximarea este mai exactă. 

   Liniarizarea modelului matematic in jurul unor puncte de functionare 

Se consideră funcţia de două variabile f(x,y), care trebuie liniarizată într-un punct de funcţionare 

cunoscut  x y0 0, . Se calculează derivata totală a funcţiei în punctul de funcţionare cunoscut: 
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Dacă se renunţă la diferenţială, relaţia (2.4) se rescrie astfel: 

                  ykxkyxF += 21),(                                               (2.3) 

unde: -F(x,y) este functia liniarizata, iar k1 si k2 reprezinta coeficientii de liniarizare. 

În scopul realizării corecţiei funcţiei liniarizate, pentru a se obţine aceeaşi valoare în punctul de 

funcţionare atât pentru funcţia iniţială cât şi pentru cea liniarizată, se introduc coeficienţii de liniarizare,   

k k1 2

* *, . Aceşti coeficienţi au expresiile: 
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Fig.2.1 Liniarizarea funcţiilor pe porţiuni 

 

Liniarizarea modelului matematic prin dezvoltare în serie Taylor 

Fiind dată o funcţie f(x,y), care este continuă şi derivabilă pe intervalul (a,b), conform dezvoltării 

în serie Taylor, se scrie: 
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       (2.5) 

unde    0 <  < 1 

Dacă în relaţia (2.5) se înlocuieşte punctul curent cu originea, se obţine formula de dezvoltare în 

serie Mac-Laurin. Dacă se scrie dezvoltarea Mac-Laurin, pentru o funcţie de o variabilă, se obţine: 
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                  (2.6) 

Liniarizarea funcţiilor 

O procedură simplă de liniarizare a unor funcţii a căror caracteristici se cunosc, constă în 

aproximarea prin segmente de dreaptă sau liniarizarea pe porţiuni definite. 

Alegerea numărului de puncte şi a pantelor nu este unică. 

Aproximarea printr-un polinom de forma: 

                                     P x a a x a x a x a xn
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constă în determinarea coeficienţilor polinomului din condiţia ca printr-un număr de puncte x1,x2,x3,...xn, 

polinomul să exprime cu exactitate valorile mărimii de ieşire. Din această condiţie rezultă un sistem de 

n+1 ecuaţii cu n+1 necunoscute, acestea fiind reprezentate de coeficienţii polinomului. 
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Este posibilă aproximarea prin polinoame pe porţiuni succesive, considerate în domeniul de 

variaţie al mărimii de intrare. Un alt tip de aproximare este liniarizarea prin polinoame de tip exponenţial, 

de forma:                                    

P x b b e b e b e b ex x x

n

xn( ) ...= + + + + +0 1 2 3
1 2 3   

                              (2.8) 

care constă în determinarea coeficienţilor bi şi ai exponenţilor , prin luarea în considerare a unui număr 

suficient de puncte pe curba descrisă de funcţia de aproximat. 

Aproximarea prin expresii trigonometrice de forma: 

                P x
c
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2
2                  (2.9) 

este uneori de preferat faţă de aproximarea polinomială de tip exponenţial. 

Liniarizarea cu ajutorul funcţiilor transcedente de tip arctgx, arcthx, shx, funcţia lui Gauss, etc., 

este uşor de făcut, dar conduce uneori la expresii greu de utilizat în calcule. 

Liniarizarea cu ajutorul unui polinom de polinoame de forma:                                    

     P x A P x A P x A P x A P xn n( ) ( ) ( ) ( ) ... ( )= + + + +0 0 1 1 2 2                         (2.10) 

alegând polinoamele P(x) astfel încât să fie satisfăcute criteriile de exactitate a aproximării. 

Printre criteriile de exactitate se pot preciza: 

-valoarea absolută a abaterii y-f(x) să fie inferioară unei limite  fixate apriori: 

                                                              y f x− ( )                                                  (2.11) 

-valoarea medie a abaterii să fie nulă:  
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-media patratică a erorii să fie inferioară limitei :   
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Tipuri de funcţii neliniare şi modul lor de liniarizare pe porţiuni:  
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2.2 REZOLVAREA CONVENŢIONALĂ A MODELULUI MATEMATIC 

Rezolvarea modelului matematic presupune rezolvarea efectivă, prin integrare, a ecuaţiei 

diferenţiale exprimată sintetic prin relaţia (2.1).                                                     

Pentru integrarea ecuaţiei diferenţiale se parcurg urmatoarele etape: 

-se determină soluţia ecuaţiei omogene, prin rezolvarea ecuaţiei caracteristice; ecuaţia caracteristică 

reprezintă membrul stâng al relaţiei (2.1); se rezolvă apoi ecuaţia neomogenă, propunând pentru membrul 

drept soluţii particulare de forma rşspunsului forţat. 
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În studiul comportării dinamice, soluţia ecuaţiei caracteristice, reprezintă partea naturală a 

răspunsului şi caracterizează funcţionarea servosistemului în regim tranzitoriu. Acest răspuns se mai 

numeşte şi răspunsul liber al servosistemului. 

Soluţia va fi de forma: 
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unde si , reprezintă soluţia ecuaţiei caracteristice a servosistemului. 

Soluţia parţială a ecuaţiei neomogene constituie partea forţată a răspunsului şi caracterizează 

funcţionarea sistemului în regim stationar, deoarece la atingerea acestui regim, partea naturală a 

răspunsului, el, se anulează. Pentru rezolvarea ecuaţiei neomogene, se alege o soluţie particulară generală, 

funcţie de tipul funcţiei forţate, i(t). 

Dacă i(t)=k, se alege ca soluţie particulară    e cf =  

Dacă i(t)=kt 2
, se alege ca soluţie particulară   e c t c t cf = + +2

2

1 0  

Dacă i(t)=k tsin , se alege ca soluţie particulară   e c t c tf = +1 2sin cos   

Dacă i(t)=ke st
, se alege ca soluţie particulară  e cef

st= . 

Prin punerea condiţiilor iniţiale şi la limită, se determină coeficienţii soluţiei forţate. 

Soluţia finală va fi de forma: 

                                                     e e el f= +                                                  (2.15) 
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